亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a novel generator called Perturbation-Assisted Sample Synthesis (PASS), designed for drawing reliable conclusions from complex data, especially when using advanced modeling techniques like deep neural networks. PASS utilizes perturbation to generate synthetic data that closely mirrors the distribution of raw data, encompassing numerical and unstructured data types such as gene expression, images, and text. By estimating the data-generating distribution and leveraging large pre-trained generative models, PASS enhances estimation accuracy, providing an estimated distribution of any statistic through Monte Carlo experiments. Building on PASS, we propose a generative inference framework called Perturbation-Assisted Inference (PAI), which offers a statistical guarantee of validity. In pivotal inference, PAI enables accurate conclusions without knowing a pivotal's distribution as in simulations, even with limited data. In non-pivotal situations, we train PASS using an independent holdout sample, resulting in credible conclusions. To showcase PAI's capability in tackling complex problems, we highlight its applications in three domains: image synthesis inference, sentiment word inference, and multimodal inference via stable diffusion.

相關內容

Information about action costs is critical for real-world AI planning applications. Rather than rely solely on declarative action models, recent approaches also use black-box external action cost estimators, often learned from data, that are applied during the planning phase. These, however, can be computationally expensive, and produce uncertain values. In this paper we suggest a generalization of deterministic planning with action costs that allows selecting between multiple estimators for action cost, to balance computation time against bounded estimation uncertainty. This enables a much richer -- and correspondingly more realistic -- problem representation. Importantly, it allows planners to bound plan accuracy, thereby increasing reliability, while reducing unnecessary computational burden, which is critical for scaling to large problems. We introduce a search algorithm, generalizing $A^*$, that solves such planning problems, and additional algorithmic extensions. In addition to theoretical guarantees, extensive experiments show considerable savings in runtime compared to alternatives.

Effectively measuring and modeling the reliability of a trained model is essential to the real-world deployment of monocular depth estimation (MDE) models. However, the intrinsic ill-posedness and ordinal-sensitive nature of MDE pose major challenges to the estimation of uncertainty degree of the trained models. On the one hand, utilizing current uncertainty modeling methods may increase memory consumption and are usually time-consuming. On the other hand, measuring the uncertainty based on model accuracy can also be problematic, where uncertainty reliability and prediction accuracy are not well decoupled. In this paper, we propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions originating from the depth probability volume and its extensions, and to assess it more fairly with more comprehensive metrics. By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability, and can be further improved when combined with ensemble or sampling methods. A series of experiments demonstrate the effectiveness of our methods.

Uncertainty learning and quantification of models are crucial tasks to enhance the trustworthiness of the models. Importantly, the recent surge of generative language models (GLMs) emphasizes the need for reliable uncertainty quantification due to the concerns on generating hallucinated facts. In this paper, we propose to learn neural prediction set models that comes with the probably approximately correct (PAC) guarantee for quantifying the uncertainty of GLMs. Unlike existing prediction set models, which are parameterized by a scalar value, we propose to parameterize prediction sets via neural networks, which achieves more precise uncertainty quantification but still satisfies the PAC guarantee. We demonstrate the efficacy of our method on four types of language datasets and six types of models by showing that our method improves the quantified uncertainty by $63\%$ on average, compared to a standard baseline method.

Inferring brain connectivity and structure \textit{in-vivo} requires accurate estimation of the orientation distribution function (ODF), which encodes key local tissue properties. However, estimating the ODF from diffusion MRI (dMRI) signals is a challenging inverse problem due to obstacles such as significant noise, high-dimensional parameter spaces, and sparse angular measurements. In this paper, we address these challenges by proposing a novel deep-learning based methodology for continuous estimation and uncertainty quantification of the spatially varying ODF field. We use a neural field (NF) to parameterize a random series representation of the latent ODFs, implicitly modeling the often ignored but valuable spatial correlation structures in the data, and thereby improving efficiency in sparse and noisy regimes. An analytic approximation to the posterior predictive distribution is derived which can be used to quantify the uncertainty in the ODF estimate at any spatial location, avoiding the need for expensive resampling-based approaches that are typically employed for this purpose. We present empirical evaluations on both synthetic and real in-vivo diffusion data, demonstrating the advantages of our method over existing approaches.

Unsupervised domain adaptation (UDA) has witnessed remarkable advancements in improving the accuracy of models for unlabeled target domains. However, the calibration of predictive uncertainty in the target domain, a crucial aspect of the safe deployment of UDA models, has received limited attention. The conventional in-domain calibration method, \textit{temperature scaling} (TempScal), encounters challenges due to domain distribution shifts and the absence of labeled target domain data. Recent approaches have employed importance-weighting techniques to estimate the target-optimal temperature based on re-weighted labeled source data. Nonetheless, these methods require source data and suffer from unreliable density estimates under severe domain shifts, rendering them unsuitable for source-free UDA settings. To overcome these limitations, we propose PseudoCal, a source-free calibration method that exclusively relies on unlabeled target data. Unlike previous approaches that treat UDA calibration as a \textit{covariate shift} problem, we consider it as an unsupervised calibration problem specific to the target domain. Motivated by the factorization of the negative log-likelihood (NLL) objective in TempScal, we generate a labeled pseudo-target set that captures the structure of the real target. By doing so, we transform the unsupervised calibration problem into a supervised one, enabling us to effectively address it using widely-used in-domain methods like TempScal. Finally, we thoroughly evaluate the calibration performance of PseudoCal by conducting extensive experiments on 10 UDA methods, considering both traditional UDA settings and recent source-free UDA scenarios. The experimental results consistently demonstrate the superior performance of PseudoCal, exhibiting significantly reduced calibration error compared to existing calibration methods.

This paper studies a new problem, \emph{active learning with partial labels} (ALPL). In this setting, an oracle annotates the query samples with partial labels, relaxing the oracle from the demanding accurate labeling process. To address ALPL, we first build an intuitive baseline that can be seamlessly incorporated into existing AL frameworks. Though effective, this baseline is still susceptible to the \emph{overfitting}, and falls short of the representative partial-label-based samples during the query process. Drawing inspiration from human inference in cognitive science, where accurate inferences can be explicitly derived from \emph{counter-examples} (CEs), our objective is to leverage this human-like learning pattern to tackle the \emph{overfitting} while enhancing the process of selecting representative samples in ALPL. Specifically, we construct CEs by reversing the partial labels for each instance, and then we propose a simple but effective WorseNet to directly learn from this complementary pattern. By leveraging the distribution gap between WorseNet and the predictor, this adversarial evaluation manner could enhance both the performance of the predictor itself and the sample selection process, allowing the predictor to capture more accurate patterns in the data. Experimental results on five real-world datasets and four benchmark datasets show that our proposed method achieves comprehensive improvements over ten representative AL frameworks, highlighting the superiority of WorseNet. The source code will be available at \url{//github.com/Ferenas/APLL}.

An in-depth understanding of uncertainty is the first step to making effective decisions under uncertainty. Deep/machine learning (ML/DL) has been hugely leveraged to solve complex problems involved with processing high-dimensional data. However, reasoning and quantifying different types of uncertainties to achieve effective decision-making have been much less explored in ML/DL than in other Artificial Intelligence (AI) domains. In particular, belief/evidence theories have been studied in KRR since the 1960s to reason and measure uncertainties to enhance decision-making effectiveness. We found that only a few studies have leveraged the mature uncertainty research in belief/evidence theories in ML/DL to tackle complex problems under different types of uncertainty. In this survey paper, we discuss several popular belief theories and their core ideas dealing with uncertainty causes and types and quantifying them, along with the discussions of their applicability in ML/DL. In addition, we discuss three main approaches that leverage belief theories in Deep Neural Networks (DNNs), including Evidential DNNs, Fuzzy DNNs, and Rough DNNs, in terms of their uncertainty causes, types, and quantification methods along with their applicability in diverse problem domains. Based on our in-depth survey, we discuss insights, lessons learned, limitations of the current state-of-the-art bridging belief theories and ML/DL, and finally, future research directions.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

北京阿比特科技有限公司