亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spatially dependent data arises in many applications, and Gaussian processes are a popular modelling choice for these scenarios. While Bayesian analyses of these problems have proven to be successful, selecting prior distributions for these complex models remains a difficult task. In this work, we propose a principled approach for setting prior distributions on model variance components by placing a prior distribution on a measure of model fit. In particular, we derive the distribution of the prior coefficient of determination. Placing a beta prior distribution on this measure induces a generalized beta prime prior distribution on the global variance of the linear predictor in the model. This method can also be thought of as shrinking the fit towards the intercept-only (null) model. We derive an efficient Gibbs sampler for the majority of the parameters and use Metropolis-Hasting updates for the others. Finally, the method is applied to a marine protection area data set. We estimate the effect of marine policies on biodiversity and conclude that no-take restrictions lead to a slight increase in biodiversity and that the majority of the variance in the linear predictor comes from the spatial effect.\vspace{12pt}

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · Backbone · Better · 小樣本學習 ·
2023 年 9 月 5 日

Previous researchers conducting Just-In-Time (JIT) defect prediction tasks have primarily focused on the performance of individual pre-trained models, without exploring the relationship between different pre-trained models as backbones. In this study, we build six models: RoBERTaJIT, CodeBERTJIT, BARTJIT, PLBARTJIT, GPT2JIT, and CodeGPTJIT, each with a distinct pre-trained model as its backbone. We systematically explore the differences and connections between these models. Specifically, we investigate the performance of the models when using Commit code and Commit message as inputs, as well as the relationship between training efficiency and model distribution among these six models. Additionally, we conduct an ablation experiment to explore the sensitivity of each model to inputs. Furthermore, we investigate how the models perform in zero-shot and few-shot scenarios. Our findings indicate that each model based on different backbones shows improvements, and when the backbone's pre-training model is similar, the training resources that need to be consumed are much more closer. We also observe that Commit code plays a significant role in defect detection, and different pre-trained models demonstrate better defect detection ability with a balanced dataset under few-shot scenarios. These results provide new insights for optimizing JIT defect prediction tasks using pre-trained models and highlight the factors that require more attention when constructing such models. Additionally, CodeGPTJIT and GPT2JIT achieved better performance than DeepJIT and CC2Vec on the two datasets respectively under 2000 training samples. These findings emphasize the effectiveness of transformer-based pre-trained models in JIT defect prediction tasks, especially in scenarios with limited training data.

This work considers Bayesian experimental design for the inverse boundary value problem of linear elasticity in a two-dimensional setting. The aim is to optimize the positions of compactly supported pressure activations on the boundary of the examined body in order to maximize the value of the resulting boundary deformations as data for the inverse problem of reconstructing the Lam\'e parameters inside the object. We resort to a linearized measurement model and adopt the framework of Bayesian experimental design, under the assumption that the prior and measurement noise distributions are mutually independent Gaussians. This enables the use of the standard Bayesian A-optimality criterion for deducing optimal positions for the pressure activations. The (second) derivatives of the boundary measurements with respect to the Lam\'e parameters and the positions of the boundary pressure activations are deduced to allow minimizing the corresponding objective function, i.e., the trace of the covariance matrix of the posterior distribution, by a gradient-based optimization algorithm. Two-dimensional numerical experiments are performed to demonstrate the functionality of our approach.

Bayesian binary regression is a prosperous area of research due to the computational challenges encountered by currently available methods either for high-dimensional settings or large datasets, or both. In the present work, we focus on the expectation propagation (EP) approximation of the posterior distribution in Bayesian probit regression under a multivariate Gaussian prior distribution. Adapting more general derivations in Anceschi et al. (2023), we show how to leverage results on the extended multivariate skew-normal distribution to derive an efficient implementation of the EP routine having a per-iteration cost that scales linearly in the number of covariates. This makes EP computationally feasible also in challenging high-dimensional settings, as shown in a detailed simulation study.

Distributed averaging is among the most relevant cooperative control problems, with applications in sensor and robotic networks, distributed signal processing, data fusion, and load balancing. Consensus and gossip algorithms have been investigated and successfully deployed in multi-agent systems to perform distributed averaging in synchronous and asynchronous settings. This study proposes a heuristic approach to estimate the convergence rate of averaging algorithms in a distributed manner, relying on the computation and propagation of local graph metrics while entailing simple data elaboration and small message passing. The protocol enables nodes to predict the time (or the number of interactions) needed to estimate the global average with the desired accuracy. Consequently, nodes can make informed decisions on their use of measured and estimated data while gaining awareness of the global structure of the network, as well as their role in it. The study presents relevant applications to outliers identification and performance evaluation in switching topologies.

Electrical circuits are present in a variety of technologies, making their design an important part of computer aided engineering. The growing number of tunable parameters that affect the final design leads to a need for new approaches of quantifying their impact. Machine learning may play a key role in this regard, however current approaches often make suboptimal use of existing knowledge about the system at hand. In terms of circuits, their description via modified nodal analysis is well-understood. This particular formulation leads to systems of differential-algebraic equations (DAEs) which bring with them a number of peculiarities, e.g. hidden constraints that the solution needs to fulfill. We aim to use the recently introduced dissection concept for DAEs that can decouple a given system into ordinary differential equations, only depending on differential variables, and purely algebraic equations that describe the relations between differential and algebraic variables. The idea then is to only learn the differential variables and reconstruct the algebraic ones using the relations from the decoupling. This approach guarantees that the algebraic constraints are fulfilled up to the accuracy of the nonlinear system solver, which represents the main benefit highlighted in this article.

Deep neural networks have shown remarkable performance when trained on independent and identically distributed data from a fixed set of classes. However, in real-world scenarios, it can be desirable to train models on a continuous stream of data where multiple classification tasks are presented sequentially. This scenario, known as Continual Learning (CL) poses challenges to standard learning algorithms which struggle to maintain knowledge of old tasks while learning new ones. This stability-plasticity dilemma remains central to CL and multiple metrics have been proposed to adequately measure stability and plasticity separately. However, none considers the increasing difficulty of the classification task, which inherently results in performance loss for any model. In that sense, we analyze some limitations of current metrics and identify the presence of setup-induced forgetting. Therefore, we propose new metrics that account for the task's increasing difficulty. Through experiments on benchmark datasets, we demonstrate that our proposed metrics can provide new insights into the stability-plasticity trade-off achieved by models in the continual learning environment.

We present a computational design method that optimizes the reinforcement of dental prostheses and increases the durability and fracture resistance of dentures. Our approach optimally places reinforcement, which could be implemented by modern multi-material, three-dimensional printers. The study focuses on reducing deformation by identifying regions within the structure that require reinforcement (E-glass material). Our method is applied to a three-dimensional removable lower jaw dental prosthesis and aims to improve the living quality of denture patients and pretend fracture of dental reinforcement in clinical studies. To do this, we compare the deformation results of a non-reinforced denture and a reinforced denture that has two materials. The results indicate the maximum deformation is lower and node-based displacement distribution demonstrates that the average displacement distribution is much better in the reinforced denture.

Hawkes processes are often applied to model dependence and interaction phenomena in multivariate event data sets, such as neuronal spike trains, social interactions, and financial transactions. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is generally a computationally expensive task, all the more with Bayesian estimation methods. In particular, for generalised nonlinear Hawkes processes, Monte-Carlo Markov Chain methods applied to compute the doubly intractable posterior distribution are not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we first unify existing variational Bayes approaches under a general nonparametric inference framework, and analyse the asymptotic properties of these methods under easily verifiable conditions on the prior, the variational class, and the nonlinear model. Secondly, we propose a novel sparsity-inducing procedure, and derive an adaptive mean-field variational algorithm for the popular sigmoid Hawkes processes. Our algorithm is parallelisable and therefore computationally efficient in high-dimensional setting. Through an extensive set of numerical simulations, we also demonstrate that our procedure is able to adapt to the dimensionality of the parameter of the Hawkes process, and is partially robust to some type of model mis-specification.

Textual geographic information is indispensable and heavily relied upon in practical applications. The absence of clear distribution poses challenges in effectively harnessing geographic information, thereby driving our quest for exploration. We contend that geographic information is influenced by human behavior, cognition, expression, and thought processes, and given our intuitive understanding of natural systems, we hypothesize its conformity to the Gamma distribution. Through rigorous experiments on a diverse range of 24 datasets encompassing different languages and types, we have substantiated this hypothesis, unearthing the underlying regularities governing the dimensions of quantity, length, and distance in geographic information. Furthermore, theoretical analyses and comparisons with Gaussian distributions and Zipf's law have refuted the contingency of these laws. Significantly, we have estimated the upper bounds of human utilization of geographic information, pointing towards the existence of uncharted territories. Also, we provide guidance in geographic information extraction. Hope we peer its true countenance uncovering the veil of geographic information.

For multivariate data with noise variables, tandem clustering is a well-known technique that aims to improve cluster identification by first reducing the dimension. However, the usual approach using principal component analysis (PCA) has been criticized for focusing only on inertia so that the first components do not necessarily retain the structure of interest for clustering. To overcome this drawback, a new tandem clustering approach based on invariant coordinate selection (ICS) is proposed. By jointly diagonalizing two scatter matrices, ICS is designed to find structure in the data while returning affine invariant components. Some theoretical results have already been derived and guarantee that under some elliptical mixture models, the group structure can be highlighted on a subset of the first and/or last components. Nevertheless, ICS has received little attention in a clustering context. Two challenges are the choice of the pair of scatter matrices and the selection of the components to retain. For clustering purposes, it is demonstrated that the best scatter pairs consist of one scatter matrix that captures the within-cluster structure and another that captures the global structure. For the former, local shape or pairwise scatters are of great interest, as is the minimum covariance determinant (MCD) estimator based on a carefully selected subset size that is smaller than usual. The performance of ICS as a dimension reduction method is evaluated in terms of preserving the cluster structure present in data. In an extensive simulation study and in empirical applications with benchmark data sets, different combinations of scatter matrices as well as component selection criteria are compared in situations with and without outliers. Overall, the new approach of tandem clustering with ICS shows promising results and clearly outperforms the approach with PCA.

北京阿比特科技有限公司