亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $\kappa(s,t)$ denote the maximum number of internally disjoint paths in an undirected graph $G$. We consider designing a data structure that includes a list of cuts, and answers the following query: given $s,t \in V$, determine whether $\kappa(s,t) \leq k$, and if so, return a pointer to an $st$-cut of size $\leq k$ (or to a minimum $st$-cut) in the list. A trivial data structure that includes a list of $n(n-1)/2$ cuts and requires $\Theta(kn^2)$ space can answer each query in $O(1)$ time. We obtain the following results. In the case when $G$ is $k$-connected, we show that $n$ cuts suffice, and that these cuts can be partitioned into $(2k+1)$ laminar families. Thus using space $O(kn)$ we can answers each min-cut query in $O(1)$ time, slightly improving and substantially simplifying a recent result of Pettie and Yin. We then extend this data structure to subset $k$-connectivity. In the general case we show that $(2k+1)n$ cuts suffice to return an $st$-cut of size $\leq k$,and a list of size $k(k+2)n$ contains a minimum $st$-cut for every $s,t \in V$. Combining our subset $k$-connectivity data structure with the data structure of Hsu and Lu for checking $k$-connectivity, we give an $O(k^2 n)$ space data structure that returns an $st$-cut of size $\leq k$ in $O(\log k)$ time, while $O(k^3 n)$ space enables to return a minimum $st$-cut.

相關內容

Graph Convolutional Networks (GCNs) are one of the most popular architectures that are used to solve classification problems accompanied by graphical information. We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks. We study these effects through the node classification problem of a non-linearly separable Gaussian mixture model coupled with a stochastic block model. First, we show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data by a factor of at least $1/\sqrt[4]{\mathbb{E}{\rm deg}}$, where $\mathbb{E}{\rm deg}$ denotes the expected degree of a node. Second, we show that with a slightly stronger graph density, two graph convolutions improve this factor to at least $1/\sqrt[4]{n}$, where $n$ is the number of nodes in the graph. Finally, we provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network, concluding that the performance is mutually similar for all combinations of the placement. We present extensive experiments on both synthetic and real-world data that illustrate our results.

Linear mixed models (LMMs) are instrumental for regression analysis with structured dependence, such as grouped, clustered, or multilevel data. However, selection among the covariates--while accounting for this structured dependence--remains a challenge. We introduce a Bayesian decision analysis for subset selection with LMMs. Using a Mahalanobis loss function that incorporates the structured dependence, we derive optimal linear coefficients for (i) any given subset of variables and (ii) all subsets of variables that satisfy a cardinality constraint. Crucially, these estimates inherit shrinkage or regularization and uncertainty quantification from the underlying Bayesian model, and apply for any well-specified Bayesian LMM. More broadly, our decision analysis strategy deemphasizes the role of a single "best" subset, which is often unstable and limited in its information content, and instead favors a collection of near-optimal subsets. This collection is summarized by key member subsets and variable-specific importance metrics. Customized subset search and out-of-sample approximation algorithms are provided for more scalable computing. These tools are applied to simulated data and a longitudinal physical activity dataset, and demonstrate excellent prediction, estimation, and selection ability.

We study the problem of testing whether a function $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial of degree at most $d$ in the \emph{distribution-free} testing model. Here, the distance between functions is measured with respect to an unknown distribution $\mathcal{D}$ over $\mathbb{R}^n$ from which we can draw samples. In contrast to previous work, we do not assume that $\mathcal{D}$ has finite support. We design a tester that given query access to $f$, and sample access to $\mathcal{D}$, makes $(d/\varepsilon)^{O(1)}$ many queries to $f$, accepts with probability $1$ if $f$ is a polynomial of degree $d$, and rejects with probability at least $2/3$ if every degree-$d$ polynomial $P$ disagrees with $f$ on a set of mass at least $\varepsilon$ with respect to $\mathcal{D}$. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to $f$, or when $f$ can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.

We consider the space needed to store a searchable partial-sums data structure with constant query time for a static sequence $S$ of $n$ positive integers in $o \left( \frac{\log n}{(\log \log n)^2} \right)$. Arroyuelo and Raman (2022) recently showed that such a structure can fit in $n H_0 (S) + o (n)$ bits. Starting with Ferragina and Venturini's (2007) $n H_k$-compressed representation of strings that supports fast random access, and augmenting it with sublinear data structures reminiscent of those Raman, Raman and Rao (2002) used in their succinct bitvectors, we slightly improve Arroyuelo and Raman's bound to $n H_k (S) + o (n)$ bits for $k \in o \left( \frac{\log n}{(\log \log n)^2} \right)$.

Functional magnetic resonance imaging (fMRI) is a non-invasive and in-vivo imaging technique essential for measuring brain activity. Functional connectivity is used to study associations between brain regions either at rest or while study subjects perform tasks. In this paper, we propose a rigorous definition of task-evoked functional connectivity at the population level (ptFC). Importantly, our proposed ptFC is interpretable in the context of task-fMRI studies. An algorithm for estimating ptFC is provided. We present the performance of the proposed algorithm compared to existing functional connectivity estimation approaches using simulations. Lastly, we apply the proposed framework to estimate task-evoked functional connectivity in a motor-task study from the Human Connectome Project.

Let $L_{k,\alpha}^{\mathbb{Z}}$ denote the set of all bi-infinite $\alpha$-power free words over an alphabet with $k$ letters, where $\alpha$ is a positive rational number and $k$ is positive integer. We prove that if $\alpha\geq 5$, $k\geq 3$, $v\in L_{k,\alpha}^{\mathbb{Z}}$, and $w$ is a finite factor of $v$, then there are $\widetilde v\in L_{k,\alpha}^{\mathbb{Z}}$ and a letter $x$ such that $w$ is a factor of $\widetilde v$ and $x$ has only a finitely many occurrences in $\widetilde v$.

A palindromic substring $T[i.. j]$ of a string $T$ is said to be a shortest unique palindromic substring (SUPS) in $T$ for an interval $[p, q]$ if $T[i.. j]$ is a shortest one such that $T[i.. j]$ occurs only once in $T$, and $[i, j]$ contains $[p, q]$. The SUPS problem is, given a string $T$ of length $n$, to construct a data structure that can compute all the SUPSs for any given query interval. It is known that any SUPS query can be answered in $O(\alpha)$ time after $O(n)$-time preprocessing, where $\alpha$ is the number of SUPSs to output [Inoue et al., 2018]. In this paper, we first show that $\alpha$ is at most $4$, and the upper bound is tight. Also, we present an algorithm to solve the SUPS problem for a sliding window that can answer any query in $O(\log\log W)$ time and update data structures in amortized $O(\log\sigma)$ time, where $W$ is the size of the window, and $\sigma$ is the alphabet size. Furthermore, we consider the SUPS problem in the after-edit model and present an efficient algorithm. Namely, we present an algorithm that uses $O(n)$ time for preprocessing and answers any $k$ SUPS queries in $O(\log n\log\log n + k\log\log n)$ time after single character substitution. As a by-product, we propose a fully-dynamic data structure for range minimum queries (RmQs) with a constraint where the width of each query range is limited to polylogarithmic. The constrained RmQ data structure can answer such a query in constant time and support a single-element edit operation in amortized constant time.

In the pooled data problem we are given a set of $n$ agents, each of which holds a hidden state bit, either $0$ or $1$. A querying procedure returns for a query set the sum of the states of the queried agents. The goal is to reconstruct the states using as few queries as possible. In this paper we consider two noise models for the pooled data problem. In the noisy channel model, the result for each agent flips with a certain probability. In the noisy query model, each query result is subject to random Gaussian noise. Our results are twofold. First, we present and analyze for both error models a simple and efficient distributed algorithm that reconstructs the initial states in a greedy fashion. Our novel analysis pins down the range of error probabilities and distributions for which our algorithm reconstructs the exact initial states with high probability. Secondly, we present simulation results of our algorithm and compare its performance with approximate message passing (AMP) algorithms that are conjectured to be optimal in a number of related problems.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司