亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A novel stochastic optimization method called MAC was suggested. The method is based on the calculation of the objective function at several random points and then an empirical expected value and an empirical covariance matrix are calculated. The empirical expected value is proven to converge to the optimum value of the problem. The MAC algorithm was encoded in Matlab and the code was tested on 20 test problems. Its performance was compared with those of the interior point method (Matlab name: fmincon), simplex, pattern search (PS), simulated annealing (SA), particle swarm optimization (PSO), and genetic algorithm (GA) methods. The MAC method failed two test functions and provided inaccurate results on four other test functions. However, it provided accurate results and required much less CPU time than the widely used optimization methods on the other 14 test functions.

相關內容

Empirical neural tangent kernels (eNTKs) can provide a good understanding of a given network's representation: they are often far less expensive to compute and applicable more broadly than infinite width NTKs. For networks with O output units (e.g. an O-class classifier), however, the eNTK on N inputs is of size $NO \times NO$, taking $O((NO)^2)$ memory and up to $O((NO)^3)$ computation. Most existing applications have therefore used one of a handful of approximations yielding $N \times N$ kernel matrices, saving orders of magnitude of computation, but with limited to no justification. We prove that one such approximation, which we call "sum of logits", converges to the true eNTK at initialization for any network with a wide final "readout" layer. Our experiments demonstrate the quality of this approximation for various uses across a range of settings.

We develop a principled approach to end-to-end learning in stochastic optimization. First, we show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map. Building on the insights of this analysis, we then propose new end-to-end learning algorithms for training decision maps that output solutions of empirical risk minimization and distributionally robust optimization problems, two dominant modeling paradigms in optimization under uncertainty. Numerical results for a synthetic newsvendor problem illustrate the key differences between alternative training schemes. We also investigate an economic dispatch problem based on real data to showcase the impact of the neural network architecture of the decision maps on their test performance.

Safe robot motion generation is critical for practical applications from manufacturing to homes. In this work, we proposed a stochastic optimization-based motion generation method to generate collision-free and time-optimal motion for the articulated robot represented by composite signed distance field (SDF) networks. First, we propose composite SDF networks to learn the SDF for articulated robots. The learned composite SDF networks combined with the kinematics of the robot allow for quick and accurate estimates of the minimum distance between the robot and obstacles in a batch fashion. Then, a stochastic optimization-based trajectory planning algorithm generates a spatial-optimized and collision-free trajectory offline with the learned composite SDF networks. This stochastic trajectory planner is formulated as a Bayesian Inference problem with a time-normalized Gaussian process prior and exponential likelihood function. The Gaussian process prior can enforce initial and goal position constraints in Configuration Space. Besides, it can encode the correlation of waypoints in time series. The likelihood function aims at encoding task-related cost terms, such as collision avoidance, trajectory length penalty, boundary avoidance, etc. The kernel updating strategies combined with model-predictive path integral (MPPI) is proposed to solve the maximum a posteriori inference problems. Lastly, we integrate the learned composite SDF networks into the trajectory planning algorithm and apply it to a Franka Emika Panda robot. The simulation and experiment results validate the effectiveness of the proposed method.

The numerical evaluation of statistics plays a crucial role in statistical physics and its applied fields. It is possible to evaluate the statistics for a stochastic differential equation with Gaussian white noise via the corresponding backward Kolmogorov equation. The important notice is that there is no need to obtain the solution of the backward Kolmogorov equation on the whole domain; it is enough to evaluate a value of the solution at a certain point that corresponds to the initial coordinate for the stochastic differential equation. For this aim, an algorithm based on combinatorics has recently been developed. In this paper, we discuss a higher-order approximation of resolvent, and an algorithm based on a second-order approximation is proposed. The proposed algorithm shows a second-order convergence. Furthermore, the convergence property of the naive algorithms naturally leads to extrapolation methods; they work well to calculate a more accurate value with fewer computational costs. The proposed method is demonstrated with the Ornstein-Uhlenbeck process and the noisy van der Pol system.

Compared to on-policy counterparts, off-policy model-free deep reinforcement learning can improve data efficiency by repeatedly using the previously gathered data. However, off-policy learning becomes challenging when the discrepancy between the underlying distributions of the agent's policy and collected data increases. Although the well-studied importance sampling and off-policy policy gradient techniques were proposed to compensate for this discrepancy, they usually require a collection of long trajectories and induce additional problems such as vanishing/exploding gradients or discarding many useful experiences, which eventually increases the computational complexity. Moreover, their generalization to either continuous action domains or policies approximated by deterministic deep neural networks is strictly limited. To overcome these limitations, we introduce a novel policy similarity measure to mitigate the effects of such discrepancy in continuous control. Our method offers an adequate single-step off-policy correction that is applicable to deterministic policy networks. Theoretical and empirical studies demonstrate that it can achieve a "safe" off-policy learning and substantially improve the state-of-the-art by attaining higher returns in fewer steps than the competing methods through an effective schedule of the learning rate in Q-learning and policy optimization.

Stochastic rounding (SR) offers an alternative to the deterministic IEEE-754 floating-point rounding modes. In some applications such as PDEs, ODEs and neural networks, SR empirically improves the numerical behavior and convergence to accurate solutions while no sound theoretical background has been provided. Recent works by Ipsen, Zhou, Higham, and Mary have computed SR probabilistic error bounds for basic linear algebra kernels. For example, the inner product SR probabilistic bound of the forward error is proportional to $\sqrt$ nu instead of nu for the default rounding mode. To compute the bounds, these works show that the errors accumulated in computation form a martingale. This paper proposes an alternative framework to characterize SR errors based on the computation of the variance. We pinpoint common error patterns in numerical algorithms and propose a lemma that bounds their variance. For each probability and through Bienaym{\'e}-Chebyshev inequality, this bound leads to better probabilistic error bound in several situations. Our method has the advantage of providing a tight probabilistic bound for all algorithms fitting our model. We show how the method can be applied to give SR error bounds for the inner product and Horner polynomial evaluation.

Tensors, also known as multidimensional arrays, are useful data structures in machine learning and statistics. In recent years, Bayesian methods have emerged as a popular direction for analyzing tensor-valued data since they provide a convenient way to introduce sparsity into the model and conduct uncertainty quantification. In this article, we provide an overview of frequentist and Bayesian methods for solving tensor completion and regression problems, with a focus on Bayesian methods. We review common Bayesian tensor approaches including model formulation, prior assignment, posterior computation, and theoretical properties. We also discuss potential future directions in this field.

Stochastic approximation with multiple coupled sequences (MSA) has found broad applications in machine learning as it encompasses a rich class of problems including bilevel optimization (BLO), multi-level compositional optimization (MCO), and reinforcement learning (specifically, actor-critic methods). However, designing provably-efficient federated algorithms for MSA has been an elusive question even for the special case of double sequence approximation (DSA). Towards this goal, we develop FedMSA which is the first federated algorithm for MSA, and establish its near-optimal communication complexity. As core novelties, (i) FedMSA enables the provable estimation of hypergradients in BLO and MCO via local client updates, which has been a notable bottleneck in prior theory, and (ii) our convergence guarantees are sensitive to the heterogeneity-level of the problem. We also incorporate momentum and variance reduction techniques to achieve further acceleration leading to near-optimal rates. Finally, we provide experiments that support our theory and demonstrate the empirical benefits of FedMSA. As an example, FedMSA enables order-of-magnitude savings in communication rounds compared to prior federated BLO schemes.

Classical analysis of convex and non-convex optimization methods often requires the Lipshitzness of the gradient, which limits the analysis to functions bounded by quadratics. Recent work relaxed this requirement to a non-uniform smoothness condition with the Hessian norm bounded by an affine function of the gradient norm, and proved convergence in the non-convex setting via gradient clipping, assuming bounded noise. In this paper, we further generalize this non-uniform smoothness condition and develop a simple, yet powerful analysis technique that bounds the gradients along the trajectory, thereby leading to stronger results for both convex and non-convex optimization problems. In particular, we obtain the classical convergence rates for (stochastic) gradient descent and Nesterov's accelerated gradient method in the convex and/or non-convex setting under this general smoothness condition. The new analysis approach does not require gradient clipping and allows heavy-tailed noise with bounded variance in the stochastic setting.

As a computational alternative to Markov chain Monte Carlo approaches, variational inference (VI) is becoming more and more popular for approximating intractable posterior distributions in large-scale Bayesian models due to its comparable efficacy and superior efficiency. Several recent works provide theoretical justifications of VI by proving its statistical optimality for parameter estimation under various settings; meanwhile, formal analysis on the algorithmic convergence aspects of VI is still largely lacking. In this paper, we consider the common coordinate ascent variational inference (CAVI) algorithm for implementing the mean-field (MF) VI towards optimizing a Kullback--Leibler divergence objective functional over the space of all factorized distributions. Focusing on the two-block case, we analyze the convergence of CAVI by leveraging the extensive toolbox from functional analysis and optimization. We provide general conditions for certifying global or local exponential convergence of CAVI. Specifically, a new notion of generalized correlation for characterizing the interaction between the constituting blocks in influencing the VI objective functional is introduced, which according to the theory, quantifies the algorithmic contraction rate of two-block CAVI. As illustrations, we apply the developed theory to a number of examples, and derive explicit problem-dependent upper bounds on the algorithmic contraction rate.

北京阿比特科技有限公司