In conversational search, the user's real search intent for the current turn is dependent on the previous conversation history. It is challenging to determine a good search query from the whole conversation context. To avoid the expensive re-training of the query encoder, most existing methods try to learn a rewriting model to de-contextualize the current query by mimicking the manual query rewriting. However, manually rewritten queries are not always the best search queries. Training a rewriting model on them would limit the model's ability to produce good search queries. Another useful hint is the potential answer to the question. In this paper, we propose ConvGQR, a new framework to reformulate conversational queries based on generative pre-trained language models (PLMs), one for query rewriting and another for generating potential answers. By combining both, ConvGQR can produce better search queries. In addition, to relate query reformulation to retrieval performance, we propose a knowledge infusion mechanism to optimize both query reformulation and retrieval. Extensive experiments on four conversational search datasets demonstrate the effectiveness of ConvGQR.
The growing popularity of Deep Neural Networks, which often require computationally expensive training and access to a vast amount of data, calls for accurate authorship verification methods to deter unlawful dissemination of the models and identify the source of the leak. In DNN watermarking the owner may have access to the full network (white-box) or only be able to extract information from its output to queries (black-box), but a watermarked model may include both approaches in order to gather sufficient evidence to then gain access to the network. Although there has been limited research in white-box watermarking that considers traitor tracing, this problem is yet to be explored in the black-box scenario. In this paper, we propose a black-and-white-box watermarking method that opens the door to collusion-resistant traitor tracing in black-box, exploiting the properties of Tardos codes, and making it possible to identify the source of the leak before access to the model is granted. While experimental results show that the method can successfully identify traitors, even when further attacks have been performed, we also discuss its limitations and open problems for traitor tracing in black-box.
In this paper, we present a novel approach for improving the quality and consistency of generated outputs from large-scale pre-trained language models (LLMs). Self-consistency has emerged as an effective approach for prompts with fixed answers, selecting the answer with the highest number of votes. In this paper, we introduce a generalized framework for self-consistency that extends its applicability beyond problems that have fixed-answer answers. Through extensive simulations, we demonstrate that our approach consistently recovers the optimal or near-optimal generation from a set of candidates. We also propose lightweight parameter-free similarity functions that show significant and consistent improvements across code generation, autoformalization, and summarization tasks, even without access to token log probabilities. Our method incurs minimal computational overhead, requiring no auxiliary reranker models or modifications to the existing model.
Adversarial attacks in reinforcement learning (RL) often assume highly-privileged access to the victim's parameters, environment, or data. Instead, this paper proposes a novel adversarial setting called a Cheap Talk MDP in which an Adversary can merely append deterministic messages to the Victim's observation, resulting in a minimal range of influence. The Adversary cannot occlude ground truth, influence underlying environment dynamics or reward signals, introduce non-stationarity, add stochasticity, see the Victim's actions, or access their parameters. Additionally, we present a simple meta-learning algorithm called Adversarial Cheap Talk (ACT) to train Adversaries in this setting. We demonstrate that an Adversary trained with ACT still significantly influences the Victim's training and testing performance, despite the highly constrained setting. Affecting train-time performance reveals a new attack vector and provides insight into the success and failure modes of existing RL algorithms. More specifically, we show that an ACT Adversary is capable of harming performance by interfering with the learner's function approximation, or instead helping the Victim's performance by outputting useful features. Finally, we show that an ACT Adversary can manipulate messages during train-time to directly and arbitrarily control the Victim at test-time. Project video and code are available at //sites.google.com/view/adversarial-cheap-talk
This work focuses on the problem of hyper-parameter tuning (HPT) for robust (i.e., adversarially trained) models, shedding light on the new challenges and opportunities arising during the HPT process for robust models. To this end, we conduct an extensive experimental study based on 3 popular deep models, in which we explore exhaustively 9 (discretized) HPs, 2 fidelity dimensions, and 2 attack bounds, for a total of 19208 configurations (corresponding to 50 thousand GPU hours). Through this study, we show that the complexity of the HPT problem is further exacerbated in adversarial settings due to the need to independently tune the HPs used during standard and adversarial training: succeeding in doing so (i.e., adopting different HP settings in both phases) can lead to a reduction of up to 80% and 43% of the error for clean and adversarial inputs, respectively. On the other hand, we also identify new opportunities to reduce the cost of HPT for robust models. Specifically, we propose to leverage cheap adversarial training methods to obtain inexpensive, yet highly correlated, estimations of the quality achievable using state-of-the-art methods. We show that, by exploiting this novel idea in conjunction with a recent multi-fidelity optimizer (taKG), the efficiency of the HPT process can be enhanced by up to 2.1x.
We present Emu, a Transformer-based multimodal foundation model, which can seamlessly generate images and texts in multimodal context. This omnivore model can take in any single-modality or multimodal data input indiscriminately (e.g., interleaved image, text and video) through a one-model-for-all autoregressive training process. First, visual signals are encoded into embeddings, and together with text tokens form an interleaved input sequence. Emu is then end-to-end trained with a unified objective of classifying the next text token or regressing the next visual embedding in the multimodal sequence. This versatile multimodality empowers the exploration of diverse pretraining data sources at scale, such as videos with interleaved frames and text, webpages with interleaved images and text, as well as web-scale image-text pairs and video-text pairs. Emu can serve as a generalist multimodal interface for both image-to-text and text-to-image tasks, and supports in-context image and text generation. Across a broad range of zero-shot/few-shot tasks including image captioning, visual question answering, video question answering and text-to-image generation, Emu demonstrates superb performance compared to state-of-the-art large multimodal models. Extended capabilities such as multimodal assistants via instruction tuning are also demonstrated with impressive performance.
Large Language Models (LLMs) have revolutionized natural language processing tasks, demonstrating their exceptional capabilities in various domains. However, their potential for behavior graph understanding in job recommendations remains largely unexplored. This paper focuses on unveiling the capability of large language models in understanding behavior graphs and leveraging this understanding to enhance recommendations in online recruitment, including the promotion of out-of-distribution (OOD) application. We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs and uncover underlying patterns and relationships. Specifically, we propose a meta-path prompt constructor that leverages LLM recommender to understand behavior graphs for the first time and design a corresponding path augmentation module to alleviate the prompt bias introduced by path-based sequence input. By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users. We evaluate the effectiveness of our approach on a comprehensive dataset and demonstrate its ability to improve the relevance and quality of recommended quality. This research not only sheds light on the untapped potential of large language models but also provides valuable insights for developing advanced recommendation systems in the recruitment market. The findings contribute to the growing field of natural language processing and offer practical implications for enhancing job search experiences.
Few-shot Learning aims to learn classifiers for new classes with only a few training examples per class. Existing meta-learning or metric-learning based few-shot learning approaches are limited in handling diverse domains with various number of labels. The meta-learning approaches train a meta learner to predict weights of homogeneous-structured task-specific networks, requiring a uniform number of classes across tasks. The metric-learning approaches learn one task-invariant metric for all the tasks, and they fail if the tasks diverge. We propose to deal with these limitations with meta metric learning. Our meta metric learning approach consists of task-specific learners, that exploit metric learning to handle flexible labels, and a meta learner, that discovers good parameters and gradient decent to specify the metrics in task-specific learners. Thus the proposed model is able to handle unbalanced classes as well as to generate task-specific metrics. We test our approach in the `$k$-shot $N$-way' few-shot learning setting used in previous work and new realistic few-shot setting with diverse multi-domain tasks and flexible label numbers. Experiments show that our approach attains superior performances in both settings.
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan