亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present a novel approach for improving the quality and consistency of generated outputs from large-scale pre-trained language models (LLMs). Self-consistency has emerged as an effective approach for prompts with fixed answers, selecting the answer with the highest number of votes. In this paper, we introduce a generalized framework for self-consistency that extends its applicability beyond problems that have fixed-answer answers. Through extensive simulations, we demonstrate that our approach consistently recovers the optimal or near-optimal generation from a set of candidates. We also propose lightweight parameter-free similarity functions that show significant and consistent improvements across code generation, autoformalization, and summarization tasks, even without access to token log probabilities. Our method incurs minimal computational overhead, requiring no auxiliary reranker models or modifications to the existing model.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 數據集 · 推斷 · Machine Translation · Analysis ·
2023 年 9 月 6 日

In this paper we present a technique of NLP to tackle the problem of inference relation (NLI) between pairs of sentences in a target language of choice without a language-specific training dataset. We exploit a generic translation dataset, manually translated, along with two instances of the same pre-trained model - the first to generate sentence embeddings for the source language, and the second fine-tuned over the target language to mimic the first. This technique is known as Knowledge Distillation. The model has been evaluated over machine translated Stanford NLI test dataset, machine translated Multi-Genre NLI test dataset, and manually translated RTE3-ITA test dataset. We also test the proposed architecture over different tasks to empirically demonstrate the generality of the NLI task. The model has been evaluated over the native Italian ABSITA dataset, on the tasks of Sentiment Analysis, Aspect-Based Sentiment Analysis, and Topic Recognition. We emphasise the generality and exploitability of the Knowledge Distillation technique that outperforms other methodologies based on machine translation, even though the former was not directly trained on the data it was tested over.

In this paper, we study functional approximations where we choose the so-called radial basis function method and more specifically, quasi-interpolation. From the various available approaches to the latter, we form new quasi-Lagrange functions when the orders of the singularities of the radial function's Fourier transforms at zero do not match the parity of the dimension of the space, and therefore new expansions and coefficients are needed to overcome this problem. We develop explicit constructions of infinite Fourier expansions that provide these coefficients and make an extensive comparison of the approximation qualities and - with a particular focus - polynomial precision and uniform approximation order of the various formulae. One of the interesting observations concerns the link between algebraic conditions of expansion coefficients and analytic properties of localness and convergence.

Human emotion recognition plays an important role in human-computer interaction. In this paper, we present our approach to the Valence-Arousal (VA) Estimation Challenge, Expression (Expr) Classification Challenge, and Action Unit (AU) Detection Challenge of the 5th Workshop and Competition on Affective Behavior Analysis in-the-wild (ABAW). Specifically, we propose a novel multi-modal fusion model that leverages Temporal Convolutional Networks (TCN) and Transformer to enhance the performance of continuous emotion recognition. Our model aims to effectively integrate visual and audio information for improved accuracy in recognizing emotions. Our model outperforms the baseline and ranks 3 in the Expression Classification challenge.

In this paper, we propose an effective computational approach to analyze and active control of geometrically nonlinear responses of functionally graded (FG) porous plates with graphene nanoplatelets (GPLs) reinforcement integrated with piezoelectric layers. The key concept behind this work is to utilize isogeometric analysis (IGA) based on B\'ezier extraction technique and $C^0$-type higher-order shear deformation theory ($C^0$-HSDT). By applying B\'ezier extraction, the original Non-Uniform Rational B-Spline (NURBS) control meshes can be transformed into B\'ezier elements which allow us to inherit the standard numerical procedure like the standard finite element method (FEM). In this scenario, the approximation of mechanical displacement field is calculated via $C^0$-HSDT whilst the electric potential field is considered as a linear function across the thickness of each piezoelectric sublayer. The FG plate includes internal pores and GPLs dispersed into metal matrix either uniformly or non-uniformly along plate's thickness. To control responses of structures, the top and bottom surfaces of FG plate are firmly bonded with piezoelectric layers which are considered as sensor and actuator layers. The geometrically nonlinear equations are solved by Newton-Raphson iterative procedure and Newmark's integration. The influence of porosity coefficient, weight fraction of GPLs as well as external electrical voltage on geometrically nonlinear behaviors of plate structures with various distributions of porosity and GPLs are thoroughly investigated. A constant displacement and velocity feedback control approaches are then adopted to actively control geometrically nonlinear static and dynamic responses, where structural damping effect is taken into account, based on a closed-loop control with sensor and actuator layers.

In this paper, we develop a non-asymptotic local normal approximation for multinomial probabilities. First, we use it to find non-asymptotic total variation bounds between the measures induced by uniformly jittered multinomials and the multivariate normals with the same means and covariances. From the total variation bounds, we also derive a comparison of the cumulative distribution functions and quantile coupling inequalities between Pearson's chi-square statistic (written as the normalized quadratic form of a multinomial vector) and its multivariate normal analogue. We apply our results to find confidence intervals for the negative entropy of discrete distributions. Our method can be applied more generally to find confidence intervals for strictly convex functions of the weights of discrete distributions.

In this paper, we introduce a new first-order mixture integer-valued threshold autoregressive process, based on the binomial and negative binomial thinning operators. Basic probabilistic and statistical properties of this model are discussed. Conditional least squares (CLS) and conditional maximum likelihood (CML) estimators are derived and the asymptotic properties of the estimators are established. The inference for the threshold parameter is obtained based on the CLS and CML score functions. Moreover, the Wald test is applied to detect the existence of the piecewise structure. Simulation studies are considered, along with an application: the number of criminal mischief incidents in the Pittsburgh dataset.

In this paper, we present a pipeline for image extraction from historical documents using foundation models, and evaluate text-image prompts and their effectiveness on humanities datasets of varying levels of complexity. The motivation for this approach stems from the high interest of historians in visual elements printed alongside historical texts on the one hand, and from the relative lack of well-annotated datasets within the humanities when compared to other domains. We propose a sequential approach that relies on GroundDINO and Meta's Segment-Anything-Model (SAM) to retrieve a significant portion of visual data from historical documents that can then be used for downstream development tasks and dataset creation, as well as evaluate the effect of different linguistic prompts on the resulting detections.

In this paper, we evaluate the different fully homomorphic encryption schemes, propose an implementation, and numerically analyze the applicability of gradient descent algorithms to solve quadratic programming in a homomorphic encryption setup. The limit on the multiplication depth of homomorphic encryption circuits is a major challenge for iterative procedures such as gradient descent algorithms. Our analysis not only quantifies these limitations on prototype examples, thus serving as a benchmark for future investigations, but also highlights additional trade-offs like the ones pertaining the choice of gradient descent or accelerated gradient descent methods, opening the road for the use of homomorphic encryption techniques in iterative procedures widely used in optimization based control. In addition, we argue that, among the available homomorphic encryption schemes, the one adopted in this work, namely CKKS, is the only suitable scheme for implementing gradient descent algorithms. The choice of the appropriate step size is crucial to the convergence of the procedure. The paper shows firsthand the feasibility of homomorphically encrypted gradient descent algorithms.

In this paper, we present a transformer architecture for predicting student performance on standardized tests. Specifically, we leverage students historical data, including their past test scores, study habits, and other relevant information, to create a personalized model for each student. We then use these models to predict their future performance on a given test. Applying this model to the RIIID dataset, we demonstrate that using multiple granularities for temporal features as the decoder input significantly improve model performance. Our results also show the effectiveness of our approach, with substantial improvements over the LightGBM method. Our work contributes to the growing field of AI in education, providing a scalable and accurate tool for predicting student outcomes.

In this paper, we address the issue of fairness in preference-based reinforcement learning (PbRL) in the presence of multiple objectives. The main objective is to design control policies that can optimize multiple objectives while treating each objective fairly. Toward this objective, we design a new fairness-induced preference-based reinforcement learning or FPbRL. The main idea of FPbRL is to learn vector reward functions associated with multiple objectives via new welfare-based preferences rather than reward-based preference in PbRL, coupled with policy learning via maximizing a generalized Gini welfare function. Finally, we provide experiment studies on three different environments to show that the proposed FPbRL approach can achieve both efficiency and equity for learning effective and fair policies.

北京阿比特科技有限公司