In this paper, we develop a non-asymptotic local normal approximation for multinomial probabilities. First, we use it to find non-asymptotic total variation bounds between the measures induced by uniformly jittered multinomials and the multivariate normals with the same means and covariances. From the total variation bounds, we also derive a comparison of the cumulative distribution functions and quantile coupling inequalities between Pearson's chi-square statistic (written as the normalized quadratic form of a multinomial vector) and its multivariate normal analogue. We apply our results to find confidence intervals for the negative entropy of discrete distributions. Our method can be applied more generally to find confidence intervals for strictly convex functions of the weights of discrete distributions.
In this paper, we study multimodal coreference resolution, specifically where a longer descriptive text, i.e., a narration is paired with an image. This poses significant challenges due to fine-grained image-text alignment, inherent ambiguity present in narrative language, and unavailability of large annotated training sets. To tackle these challenges, we present a data efficient semi-supervised approach that utilizes image-narration pairs to resolve coreferences and narrative grounding in a multimodal context. Our approach incorporates losses for both labeled and unlabeled data within a cross-modal framework. Our evaluation shows that the proposed approach outperforms strong baselines both quantitatively and qualitatively, for the tasks of coreference resolution and narrative grounding.
In two and three dimensions, we design and analyze a posteriori error estimators for the mixed Stokes eigenvalue problem. The unknowns on this mixed formulation are the pseudotress, velocity and pressure. With a lowest order mixed finite element scheme, together with a postprocressing technique, we prove that the proposed estimator is reliable and efficient. We illustrate the results with several numerical tests in two and three dimensions in order to assess the performance of the estimator.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.
In this paper we consider an approach to improve the performance of exponential Runge--Kutta integrators and Lawson schemes} in cases where the solution of a related, but usually much simpler, problem can be computed efficiently. While for implicit methods such an approach is common (e.g. by using preconditioners), for exponential integrators this has proven more challenging. Here we propose to extract a constant coefficient differential operator from the semilinear advection-diffusion-reaction equation for which, in many situations, efficient methods are known to compute the required matrix functions. Both a linear stability analysis and {\color{black} extensive} numerical experiments show that the resulting schemes can be unconditionally stable. In fact, we find that exponential integrators of Runge--Kutta type and Lawson schemes can have better stability properties than similarly constructed implicit-explicit schemes. We also derive two new Lawson type integrators that further improve on these stability properties. The overall effectiveness of the approach is highlighted by a number of performance comparisons on examples in two and three space dimensions.
In this paper the interpolating rational functions introduced by Floater and Hormann are generalized leading to a whole new family of rational functions depending on $\gamma$, an additional positive integer parameter. For $\gamma = 1$, the original Floater--Hormann interpolants are obtained. When $\gamma>1$ we prove that the new rational functions share a lot of the nice properties of the original Floater--Hormann functions. Indeed, for any configuration of nodes in a compact interval, they have no real poles, interpolate the given data, preserve the polynomials up to a certain fixed degree, and have a barycentric-type representation. Moreover, we estimate the associated Lebesgue constants in terms of the minimum ($h^*$) and maximum ($h$) distance between two consecutive nodes. It turns out that, in contrast to the original Floater-Hormann interpolants, for all $\gamma > 1$ we get uniformly bounded Lebesgue constants in the case of equidistant and quasi-equidistant nodes configurations (i.e., when $h\sim h^*$). For such configurations, as the number of nodes tends to infinity, we prove that the new interpolants ($\gamma>1$) uniformly converge to the interpolated function $f$, for any continuous function $f$ and all $\gamma>1$. The same is not ensured by the original FH interpolants ($\gamma=1$). Moreover, we provide uniform and pointwise estimates of the approximation error for functions having different degrees of smoothness. Numerical experiments illustrate the theoretical results and show a better error profile for less smooth functions compared to the original Floater-Hormann interpolants.
In this paper we introduce a multilevel Picard approximation algorithm for general semilinear parabolic PDEs with gradient-dependent nonlinearities whose coefficient functions do not need to be constant. We also provide a full convergence and complexity analysis of our algorithm. To obtain our main results, we consider a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula. We show that the PDE under consideration has a unique viscosity solution which coincides with the first component of the unique solution of the stochastic fixed-point equation. Moreover, if the PDE admits a strong solution, then the gradient of the unique solution of the PDE coincides with the second component of the unique solution of the stochastic fixed-point equation.
In this paper, we propose a low rank approximation method for efficiently solving stochastic partial differential equations. Specifically, our method utilizes a novel low rank approximation of the stiffness matrices, which can significantly reduce the computational load and storage requirements associated with matrix inversion without losing accuracy. To demonstrate the versatility and applicability of our method, we apply it to address two crucial uncertainty quantification problems: stochastic elliptic equations and optimal control problems governed by stochastic elliptic PDE constraints. Based on varying dimension reduction ratios, our algorithm exhibits the capability to yield a high precision numerical solution for stochastic partial differential equations, or provides a rough representation of the exact solutions as a pre-processing phase. Meanwhile, our algorithm for solving stochastic optimal control problems allows a diverse range of gradient-based unconstrained optimization methods, rendering it particularly appealing for computationally intensive large-scale problems. Numerical experiments are conducted and the results provide strong validation of the feasibility and effectiveness of our algorithm.
By comparing the original and target prompts in editing task, we can obtain numerous editing pairs, each comprising an object and its corresponding editing target. To allow editability while maintaining fidelity to the input image, existing editing methods typically involve a fixed number of inversion steps that project the whole input image to its noisier latent representation, followed by a denoising process guided by the target prompt. However, we find that the optimal number of inversion steps for achieving ideal editing results varies significantly among different editing pairs, owing to varying editing difficulties. Therefore, the current literature, which relies on a fixed number of inversion steps, produces sub-optimal generation quality, especially when handling multiple editing pairs in a natural image. To this end, we propose a new image editing paradigm, dubbed Object-aware Inversion and Reassembly (OIR), to enable object-level fine-grained editing. Specifically, we design a new search metric, which determines the optimal inversion steps for each editing pair, by jointly considering the editability of the target and the fidelity of the non-editing region. We use our search metric to find the optimal inversion step for each editing pair when editing an image. We then edit these editing pairs separately to avoid concept mismatch. Subsequently, we propose an additional reassembly step to seamlessly integrate the respective editing results and the non-editing region to obtain the final edited image. To systematically evaluate the effectiveness of our method, we collect two datasets for benchmarking single- and multi-object editing, respectively. Experiments demonstrate that our method achieves superior performance in editing object shapes, colors, materials, categories, etc., especially in multi-object editing scenarios.
In this paper, we consider an inverse space-dependent source problem for a time-fractional diffusion equation. To deal with the ill-posedness of the problem, we transform the problem into an optimal control problem with total variational (TV) regularization. In contrast to the classical Tikhonov model incorporating $L^2$ penalty terms, the inclusion of a TV term proves advantageous in reconstructing solutions that exhibit discontinuities or piecewise constancy. The control problem is approximated by a fully discrete scheme, and convergence results are provided within this framework. Furthermore, a lineraed primal-dual iterative algorithm is proposed to solve the discrete control model based on an equivalent saddle-point reformulation, and several numerical experiments are presented to demonstrate the efficiency of the algorithm.
In this article, we focus on the error that is committed when computing the matrix logarithm using the Gauss--Legendre quadrature rules. These formulas can be interpreted as Pad\'e approximants of a suitable Gauss hypergeometric function. Empirical observation tells us that the convergence of these quadratures becomes slow when the matrix is not close to the identity matrix, thus suggesting the usage of an inverse scaling and squaring approach for obtaining a matrix with this property. The novelty of this work is the introduction of error estimates that can be used to select a priori both the number of Legendre points needed to obtain a given accuracy and the number of inverse scaling and squaring to be performed. We include some numerical experiments to show the reliability of the estimates introduced.