In this paper we consider an approach to improve the performance of exponential Runge--Kutta integrators and Lawson schemes} in cases where the solution of a related, but usually much simpler, problem can be computed efficiently. While for implicit methods such an approach is common (e.g. by using preconditioners), for exponential integrators this has proven more challenging. Here we propose to extract a constant coefficient differential operator from the semilinear advection-diffusion-reaction equation for which, in many situations, efficient methods are known to compute the required matrix functions. Both a linear stability analysis and {\color{black} extensive} numerical experiments show that the resulting schemes can be unconditionally stable. In fact, we find that exponential integrators of Runge--Kutta type and Lawson schemes can have better stability properties than similarly constructed implicit-explicit schemes. We also derive two new Lawson type integrators that further improve on these stability properties. The overall effectiveness of the approach is highlighted by a number of performance comparisons on examples in two and three space dimensions.
We present a novel Finite Volume (FV) scheme on unstructured polygonal meshes that is provably compliant with the Second Law of Thermodynamics and the Geometric Conservation Law (GCL) at the same time. The governing equations are provided by a subset of the class of symmetric and hyperbolic thermodynamically compatible (SHTC) models. Our numerical method discretizes the equations for the conservation of momentum, total energy, distortion tensor and thermal impulse vector, hence accounting in one single unified mathematical formalism for a wide range of physical phenomena in continuum mechanics. By means of two conservative corrections directly embedded in the definition of the numerical fluxes, the new schemes are proven to satisfy two extra conservation laws, namely an entropy balance law and a geometric equation that links the distortion tensor to the density evolution. As such, the classical mass conservation equation can be discarded. Firstly, the GCL is derived at the continuous level, and subsequently it is satisfied by introducing the new concepts of general potential and generalized Gibbs relation. Once compatibility of the GCL is ensured, thermodynamic compatibility is tackled in the same manner, thus achieving the satisfaction of a local cell entropy inequality. The two corrections are orthogonal, meaning that they can coexist simultaneously without interfering with each other. The compatibility of the new FV schemes holds true at the semi-discrete level, and time integration of the governing PDE is carried out relying on Runge-Kutta schemes. A large suite of test cases demonstrates the structure preserving properties of the schemes at the discrete level as well.
This paper explores an iterative coupling approach to solve linear thermo-poroelasticity problems, with its application as a high-fidelity discretization utilizing finite elements during the training of projection-based reduced order models. One of the main challenges in addressing coupled multi-physics problems is the complexity and computational expenses involved. In this study, we introduce a decoupled iterative solution approach, integrated with reduced order modeling, aimed at augmenting the efficiency of the computational algorithm. The iterative coupling technique we employ builds upon the established fixed-stress splitting scheme that has been extensively investigated for Biot's poroelasticity. By leveraging solutions derived from this coupled iterative scheme, the reduced order model employs an additional Galerkin projection onto a reduced basis space formed by a small number of modes obtained through proper orthogonal decomposition. The effectiveness of the proposed algorithm is demonstrated through numerical experiments, showcasing its computational prowess.
In this work we make us of Livens principle (sometimes also referred to as Hamilton-Pontryagin principle) in order to obtain a novel structure-preserving integrator for mechanical systems. In contrast to the canonical Hamiltonian equations of motion, the Euler-Lagrange equations pertaining to Livens principle circumvent the need to invert the mass matrix. This is an essential advantage with respect to singular mass matrices, which can yield severe difficulties for the modelling and simulation of multibody systems. Moreover, Livens principle unifies both Lagrangian and Hamiltonian viewpoints on mechanics. Additionally, the present framework avoids the need to set up the system's Hamiltonian. The novel scheme algorithmically conserves a general energy function and aims at the preservation of momentum maps corresponding to symmetries of the system. We present an extension to mechanical systems subject to holonomic constraints. The performance of the newly devised method is studied in representative examples.
The objective of this paper is to compute initial conditions for quasi-linear hyperbolic equations. Our proposed approach involves approximating the solution of the hyperbolic equation by truncating its Fourier expansion in the time domain using the polynomial-exponential basis. This truncation enables the elimination of the time variable, resulting in a system of quasi-linear elliptic equations. Thus, we refer to our approach as the "time dimensional reduction method." To solve this system globally without requesting a good initial guess, we employ the Carleman contraction principle. To demonstrate the effectiveness of our method, we provide several numerical examples. The time dimensional reduction method not only provides accurate solutions but also exhibits exceptional computational speed.
In this paper, we perform a roundoff error analysis of an integration-based method for computing the matrix sign function recently proposed by Nakaya and Tanaka. The method expresses the matrix sign function using an integral representation and computes the integral numerically by the double-exponential formula. While the method has large-grain parallelism and works well for well-conditioned matrices, its accuracy deteriorates when the input matrix is ill-conditioned or highly nonnormal. We investigate the reason for this phenomenon by a detailed roundoff error analysis.
In this paper, we discuss the concept of quantum graphs with transparent vertices by considering the case where the graph interacts with an external time-independent field. In particular, we address the problem of transparent boundary conditions for quantum graphs, building on previous work on transparent boundary conditions for the stationary Schrodinger equation on a line. Physically relevant constraints making the vertex transparent under boundary conditions in the form of (weight) continuity and Kirchhoff rules are derived using two methods, the scattering approach and transparent boundary conditions for the time-independent Schrodinger equation. The latter is derived by extending the transparent boundary condition concept to the time-independent Schrodinger equation on driven quantum graphs. We also discuss how the eigenvalues and eigenfunctions of a quantum graph are influenced not only by its topology, but also by the shape(type) of a potential when an external field is involved.
This paper investigates the efficient solution of penalized quadratic regressions in high-dimensional settings. A novel and efficient algorithm for ridge-penalized quadratic regression is proposed, leveraging the matrix structures of the regression with interactions. Additionally, an alternating direction method of multipliers (ADMM) framework is developed for penalized quadratic regression with general penalties, including both single and hybrid penalty functions. The approach simplifies the calculations to basic matrix-based operations, making it appealing in terms of both memory storage and computational complexity for solving penalized quadratic regressions in high-dimensional settings.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.
In this paper, we consider the two-sample location shift model, a classic semiparametric model introduced by Stein (1956). This model is known for its adaptive nature, enabling nonparametric estimation with full parametric efficiency. Existing nonparametric estimators of the location shift often depend on external tuning parameters, which restricts their practical applicability (Van der Vaart and Wellner, 2021). We demonstrate that introducing an additional assumption of log-concavity on the underlying density can alleviate the need for tuning parameters. We propose a one step estimator for location shift estimation, utilizing log-concave density estimation techniques to facilitate tuning-free estimation of the efficient influence function. While we employ a truncated version of the one step estimator for theoretical adaptivity, our simulations indicate that the one step estimators perform best with zero truncation, eliminating the need for tuning during practical implementation.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.