Story ideation is a critical part of the story-writing process. It is challenging to support computationally due to its exploratory and subjective nature. Tropes, which are recurring narrative elements across stories, are essential in stories as they shape the structure of narratives and our understanding of them. In this paper, we propose to use tropes as an intermediate representation of stories to approach story ideation. We present TaleStream, a canvas system that uses tropes as building blocks of stories while providing steerable suggestions of story ideas in the form of tropes. Our trope suggestion methods leverage data from the tvtropes.org wiki. We find that 97% of the time, trope suggestions generated by our methods provide better story ideation materials than random tropes. Our system evaluation suggests that TaleStream can support writers' creative flow and greatly facilitates story development. Tropes, as a rich lexicon of narratives with available examples, play a key role in TaleStream and hold promise for story-creation support systems.
Prefetching is a crucial technique employed in traditional databases to enhance interactivity, particularly in the context of data exploitation. Data exploration is a query processing paradigm in which users search for insights buried in the data, often not knowing what exactly they are looking for. Data exploratory tools deal with multiple challenges such as the need for interactivity with no a priori knowledge being present to help with the system tuning. The state-of-the-art prefetchers are specifically designed for navigational workloads only, where the number of possible actions is limited. The prefetchers that work with SQL-based workloads, on the other hand, mainly rely on data logical addresses rather than the data semantics. They fail to predict complex access patterns in cases where the database size is substantial, resulting in an extensive address space, or when there is frequent co-accessing of data. In this paper, we propose SeLeP, a semantic prefetcher that makes prefetching decisions for both types of workloads, based on the encoding of the data values contained inside the accessed blocks. Following the popular path of using machine learning approaches to automatically learn the hidden patterns, we formulate the prefetching task as a time-series forecasting problem and use an encoder-decoder LSTM architecture to learn the data access pattern. Our extensive experiments, across real-life exploratory workloads, demonstrate that SeLeP improves the hit ratio up to 40% and reduces I/O time up to 45% compared to the state-of-the-art, attaining impressive 95% hit ratio and 80% I/O reduction on average.
Quantum networks serve as the means to transmit information, encoded in quantum bits or qubits, between quantum processors that are physically separated. Given the instability of qubits, the design of such networks is challenging, necessitating a careful balance between reliability and efficiency. Typically, quantum networks fall into two categories: those utilize quantum entanglements for quantum teleportation, and those directly transfer quantum message. In this paper, we present SurfaceNet, a quantum network in the second category that employs surface codes as logical qubits for preserving and transferring message. Our approach of using surface codes can fault-tolerantly correct both operational and photon loss errors within the network. We propose a novel one-way quantum communication procedure, designed to better integrate surface codes into our network architecture. We also propose an efficient routing protocol that optimizes resource utilization for our communication procedure. Simulation results demonstrate that SurfaceNet significantly enhances the overall communication fidelity.
Representation learning has significantly driven the field to develop pretrained models that can act as a valuable starting point when transferring to new datasets. With the rising demand for reliable machine learning and uncertainty quantification, there is a need for pretrained models that not only provide embeddings but also transferable uncertainty estimates. To guide the development of such models, we propose the Uncertainty-aware Representation Learning (URL) benchmark. Besides the transferability of the representations, it also measures the zero-shot transferability of the uncertainty estimate using a novel metric. We apply URL to evaluate eleven uncertainty quantifiers that are pretrained on ImageNet and transferred to eight downstream datasets. We find that approaches that focus on the uncertainty of the representation itself or estimate the prediction risk directly outperform those that are based on the probabilities of upstream classes. Yet, achieving transferable uncertainty quantification remains an open challenge. Our findings indicate that it is not necessarily in conflict with traditional representation learning goals. Code is provided under //github.com/mkirchhof/url .
With the advance of large language models (LLMs), the research field of LLM applications becomes more and more popular and the idea of constructing pipelines to accomplish complex tasks by stacking LLM API calls come true. However, this kind of methods face two limitations: narrow information coverage and low fault tolerance. In this work, we propose a novel method called ALLIES. Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query, enabling an iterative reasoning process. By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly obtainable through retrieval. We take zero-shot open-domain question answering (ODQA) as an application scene and evaluate ALLIES on the widely-used benchmarks, such as NQ, WebQ and TriviaQA. The experimental results demonstrate that ALLIES significantly outperforms other zero-shot baselines, indicating its effectiveness in tackling those challenges. Our code is available in //github.com/microsoft/SimXNS/tree/main/ALLIES.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.