As popular demand for digital information increases, public libraries are increasingly turning to commercial digital content distribution services to save curation time and costs. These services let libraries subscribe to pre-configured digital content packages that become instantly available wholesale to their patrons. However, these packages often contain content that does not align with the library's curation policy. We conducted interviews with 15 public librarians in the US to examine their experiences with subscribing to digital distribution services. We found that the subscribing libraries face many digital governance challenges, including the sub-par quality of received content, a lack of control in the curation process, and a limited understanding of how distribution services operate. We draw from prior HCI and social media moderation literature to contextualize and examine these challenges. Building upon our findings, we suggest how digital distributors, libraries, and lawmakers could improve digital distribution services in library settings. We offer recommendations for co-constructing a robust digital content curation policy and discuss how librarian's cooperation and well-deployed content moderation mechanisms could help enforce that policy. Our work informs the utility of future content moderation research that bridges the fields of CSCW and library science.
More research attention has recently been given to end-to-end autonomous driving technologies where the entire driving pipeline is replaced with a single neural network because of its simpler structure and faster inference time. Despite this appealing approach largely reducing the components in driving pipeline, its simplicity also leads to interpretability problems and safety issues arXiv:2003.06404. The trained policy is not always compliant with the traffic rules and it is also hard to discover the reason for the misbehavior because of the lack of intermediate outputs. Meanwhile, Sensors are also critical to autonomous driving's security and feasibility to perceive the surrounding environment under complex driving scenarios. In this paper, we proposed P-CSG, a novel penalty-based imitation learning approach with cross semantics generation sensor fusion technologies to increase the overall performance of End-to-End Autonomous Driving. We conducted an assessment of our model's performance using the Town 05 Long benchmark, achieving an impressive driving score improvement of over 15%. Furthermore, we conducted robustness evaluations against adversarial attacks like FGSM and Dot attacks, revealing a substantial increase in robustness compared to baseline models.More detailed information, such as code-based resources, ablation studies and videos can be found at //hk-zh.github.io/p-csg-plus.
We present the first extensive measurement of the privacy properties of the advertising systems used by privacy-focused search engines. We propose an automated methodology to study the impact of clicking on search ads on three popular private search engines which have advertising-based business models: StartPage, Qwant, and DuckDuckGo, and we compare them to two dominant data-harvesting ones: Google and Bing. We investigate the possibility of third parties tracking users when clicking on ads by analyzing first-party storage, redirection domain paths, and requests sent before, when, and after the clicks. Our results show that privacy-focused search engines fail to protect users' privacy when clicking ads. Users' requests are sent through redirectors on 4% of ad clicks on Bing, 86% of ad clicks on Qwant, and 100% of ad clicks on Google, DuckDuckGo, and StartPage. Even worse, advertising systems collude with advertisers across all search engines by passing unique IDs to advertisers in most ad clicks. These IDs allow redirectors to aggregate users' activity on ads' destination websites in addition to the activity they record when users are redirected through them. Overall, we observe that both privacy-focused and traditional search engines engage in privacy-harming behaviors allowing cross-site tracking, even in privacy-enhanced browsers.
User feedback has grown in importance for organizations to improve software products. Prior studies focused primarily on feedback collection and reported a high-level overview of the processes, often overlooking how practitioners reason about, and act upon this feedback through a structured set of activities. In this work, we conducted an exploratory interview study with 40 practitioners from 32 organizations of various sizes and in several domains such as e-commerce, analytics, and gaming. Our findings indicate that organizations leverage many different user feedback sources. Social media emerged as a key category of feedback that is increasingly critical for many organizations. We found that organizations actively engage in a number of non-trivial activities to curate and act on user feedback, depending on its source. We synthesize these activities into a life cycle of managing user feedback. We also report on the best practices for managing user feedback that we distilled from responses of practitioners who felt that their organization effectively understood and addressed their users' feedback. We present actionable empirical results that organizations can leverage to increase their understanding of user perception and behavior for better products thus reducing user attrition.
Environmental, social, and governance (ESG) reports are globally recognized as a keystone in sustainable enterprise development. This study aims to map the changing landscape of ESG topics within firms in the global market. A dynamic framework is developed to analyze ESG strategic management for individual classes, across multiple classes, and in alignment with a specific sustainability index. The output of these analytical processes forms the foundation of an ESG strategic model. Utilizing a rich collection of 21st-century ESG reports from technology companies, our experiment elucidates the changes in ESG perspectives by incorporating analytical keywords into the proposed framework. This work thus provides an empirical method that reveals the concurrent evolution of ESG topics over recent years.
Recent work in algorithmic fairness has highlighted the challenge of defining racial categories for the purposes of anti-discrimination. These challenges are not new but have previously fallen to the state, which enacts race through government statistics, policies, and evidentiary standards in anti-discrimination law. Drawing on the history of state race-making, we examine how longstanding questions about the nature of race and discrimination appear within the algorithmic fairness literature. Through a content analysis of 60 papers published at FAccT between 2018 and 2020, we analyze how race is conceptualized and formalized in algorithmic fairness frameworks. We note that differing notions of race are adopted inconsistently, at times even within a single analysis. We also explore the institutional influences and values associated with these choices. While we find that categories used in algorithmic fairness work often echo legal frameworks, we demonstrate that values from academic computer science play an equally important role in the construction of racial categories. Finally, we examine the reasoning behind different operationalizations of race, finding that few papers explicitly describe their choices and even fewer justify them. We argue that the construction of racial categories is a value-laden process with significant social and political consequences for the project of algorithmic fairness. The widespread lack of justification around the operationalization of race reflects institutional norms that allow these political decisions to remain obscured within the backstage of knowledge production.
Technical debt refers to the consequences of sub-optimal decisions made during software development that prioritize short-term benefits over long-term maintainability. Self-Admitted Technical Debt (SATD) is a specific form of technical debt, explicitly documented by developers within software artifacts such as source code comments and commit messages. As SATD can hinder software development and maintenance, it is crucial to address and prioritize it effectively. However, current methodologies lack the ability to automatically estimate the repayment effort of SATD based on its textual descriptions. To address this limitation, we propose a novel approach for automatically estimating SATD repayment effort, utilizing a comprehensive dataset comprising 341,740 SATD items from 2,568,728 commits across 1,060 Apache repositories. Our findings show that different types of SATD require varying levels of repayment effort, with code/design, requirement, and test debt demanding greater effort compared to non-SATD items, while documentation debt requires less. We introduce and evaluate machine learning methodologies, particularly BERT and TextCNN, which outperforms classic machine learning methods and the naive baseline in estimating repayment effort. Additionally, we summarize keywords associated with varying levels of repayment effort that occur during SATD repayment. Our contributions aim to enhance the prioritization of SATD repayment effort and resource allocation efficiency, ultimately benefiting software development and maintainability.
As social media becomes increasingly popular, more and more public health activities emerge, which is worth noting for pandemic monitoring and government decision-making. Current techniques for public health analysis involve popular models such as BERT and large language models (LLMs). Although recent progress in LLMs has shown a strong ability to comprehend knowledge by being fine-tuned on specific domain datasets, the costs of training an in-domain LLM for every specific public health task are especially expensive. Furthermore, such kinds of in-domain datasets from social media are generally highly imbalanced, which will hinder the efficiency of LLMs tuning. To tackle these challenges, the data imbalance issue can be overcome by sophisticated data augmentation methods for social media datasets. In addition, the ability of the LLMs can be effectively utilised by prompting the model properly. In light of the above discussion, in this paper, a novel ALEX framework is proposed for social media analysis on public health. Specifically, an augmentation pipeline is developed to resolve the data imbalance issue. Furthermore, an LLMs explanation mechanism is proposed by prompting an LLM with the predicted results from BERT models. Extensive experiments conducted on three tasks at the Social Media Mining for Health 2023 (SMM4H) competition with the first ranking in two tasks demonstrate the superior performance of the proposed ALEX method. Our code has been released in //github.com/YanJiangJerry/ALEX.
Modern recommender systems lie at the heart of complex ecosystems that couple the behavior of users, content providers, advertisers, and other actors. Despite this, the focus of the majority of recommender research -- and most practical recommenders of any import -- is on the local, myopic optimization of the recommendations made to individual users. This comes at a significant cost to the long-term utility that recommenders could generate for its users. We argue that explicitly modeling the incentives and behaviors of all actors in the system -- and the interactions among them induced by the recommender's policy -- is strictly necessary if one is to maximize the value the system brings to these actors and improve overall ecosystem "health". Doing so requires: optimization over long horizons using techniques such as reinforcement learning; making inevitable tradeoffs in the utility that can be generated for different actors using the methods of social choice; reducing information asymmetry, while accounting for incentives and strategic behavior, using the tools of mechanism design; better modeling of both user and item-provider behaviors by incorporating notions from behavioral economics and psychology; and exploiting recent advances in generative and foundation models to make these mechanisms interpretable and actionable. We propose a conceptual framework that encompasses these elements, and articulate a number of research challenges that emerge at the intersection of these different disciplines.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.