亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In modern communication systems with feedback, there are increasingly more scenarios where the transmitter has much less power than the receiver (e.g., medical implant devices), which we refer to as noise-asymmetric channels. For such channels, the feedback link is of higher quality than the forward link. However, feedback schemes for cellular communications, such as hybrid ARQ, do not fully utilize the high-quality feedback link. To this end, we introduce Compressed Error Hybrid ARQ, a generalization of hybrid ARQ tailored for noise-asymmetric channels; the receiver sends its estimated message to the transmitter, and the transmitter harmoniously switches between hybrid ARQ and compressed error retransmission. We show that our proposed method significantly improves reliability, latency, and spectral efficiency compared to the conventional hybrid ARQ in various practical scenarios where the transmitter is resource-constrained.

相關內容

Neural Ordinary Differential Equations (NODEs), a framework of continuous-depth neural networks, have been widely applied, showing exceptional efficacy in coping with representative datasets. Recently, an augmented framework has been developed to overcome some limitations that emerged in the application of the original framework. In this paper, we propose a new class of continuous-depth neural networks with delay, named Neural Delay Differential Equations (NDDEs). To compute the corresponding gradients, we use the adjoint sensitivity method to obtain the delayed dynamics of the adjoint. Differential equations with delays are typically seen as dynamical systems of infinite dimension that possess more fruitful dynamics. Compared to NODEs, NDDEs have a stronger capacity of nonlinear representations. We use several illustrative examples to demonstrate this outstanding capacity. Firstly, we successfully model the delayed dynamics where the trajectories in the lower-dimensional phase space could be mutually intersected and even chaotic in a model-free or model-based manner. Traditional NODEs, without any argumentation, are not directly applicable for such modeling. Secondly, we achieve lower loss and higher accuracy not only for the data produced synthetically by complex models but also for the CIFAR10, a well-known image dataset. Our results on the NDDEs demonstrate that appropriately articulating the elements of dynamical systems into the network design is truly beneficial in promoting network performance.

Federated learning (FL) is a new distributed learning paradigm, with privacy, utility, and efficiency as its primary pillars. Existing research indicates that it is unlikely to simultaneously attain infinitesimal privacy leakage, utility loss, and efficiency. Therefore, how to find an optimal trade-off solution is the key consideration when designing the FL algorithm. One common way is to cast the trade-off problem as a multi-objective optimization problem, i.e., the goal is to minimize the utility loss and efficiency reduction while constraining the privacy leakage not exceeding a predefined value. However, existing multi-objective optimization frameworks are very time-consuming, and do not guarantee the existence of the Pareto frontier, this motivates us to seek a solution to transform the multi-objective problem into a single-objective problem because it is more efficient and easier to be solved. To this end, in this paper, we propose FedPAC, a unified framework that leverages PAC learning to quantify multiple objectives in terms of sample complexity, such quantification allows us to constrain the solution space of multiple objectives to a shared dimension, so that it can be solved with the help of a single-objective optimization algorithm. Specifically, we provide the results and detailed analyses of how to quantify the utility loss, privacy leakage, privacy-utility-efficiency trade-off, as well as the cost of the attacker from the PAC learning perspective.

Online federated learning (FL) enables geographically distributed devices to learn a global shared model from locally available streaming data. Most online FL literature considers a best-case scenario regarding the participating clients and the communication channels. However, these assumptions are often not met in real-world applications. Asynchronous settings can reflect a more realistic environment, such as heterogeneous client participation due to available computational power and battery constraints, as well as delays caused by communication channels or straggler devices. Further, in most applications, energy efficiency must be taken into consideration. Using the principles of partial-sharing-based communications, we propose a communication-efficient asynchronous online federated learning (PAO-Fed) strategy. By reducing the communication overhead of the participants, the proposed method renders participation in the learning task more accessible and efficient. In addition, the proposed aggregation mechanism accounts for random participation, handles delayed updates and mitigates their effect on accuracy. We prove the first and second-order convergence of the proposed PAO-Fed method and obtain an expression for its steady-state mean square deviation. Finally, we conduct comprehensive simulations to study the performance of the proposed method on both synthetic and real-life datasets. The simulations reveal that in asynchronous settings, the proposed PAO-Fed is able to achieve the same convergence properties as that of the online federated stochastic gradient while reducing the communication overhead by 98 percent.

This paper investigates the information freshness of Industrial Internet of Things (IIoT) systems, where each IoT device makes a partial observation of a common target and transmits the information update to a central receiver to recover the complete observation. We consider the age of collection (AoC) performance as a measure of information freshness. Unlike the conventional age of information (AoI) metric, the instantaneous AoC decreases only when all cooperative packets for a common observation are successfully received. Hence, effectively allocating wireless time-frequency resources among IoT devices to achieve a low average AoC at the central receiver is paramount. Three multiple access schemes are considered in this paper: time-division multiple access (TDMA) without retransmission, TDMA with retransmission, and frequency-division multiple access (FDMA). First, our theoretical analysis indicates that TDMA with retransmission outperforms the other two schemes in terms of average AoC. Subsequently, we implement information update systems based on the three schemes on software-defined radios. Experimental results demonstrate that considering the medium access control (MAC) overhead in practice, FDMA achieves a lower average AoC than TDMA with or without retransmission in the high signal-to-noise ratio (SNR) regime. In contrast, TDMA with retransmission provides a stable and relatively low average AoC over a wide SNR range, which is favorable for IIoT applications. Overall, we present a theoretical-plus-experimental investigation of AoC in IIoT information update systems.

Ransomware uses encryption methods to make data inaccessible to legitimate users. To date a wide range of ransomware families have been developed and deployed, causing immense damage to governments, corporations, and private users. As these cyberthreats multiply, researchers have proposed a range of ransomware detection and classification schemes. Most of these methods use advanced machine learning techniques to process and analyze real-world ransomware binaries and action sequences. Hence this paper presents a survey of this critical space and classifies existing solutions into several categories, i.e., including network-based, host-based, forensic characterization, and authorship attribution. Key facilities and tools for ransomware analysis are also presented along with open challenges.

Hierarchical Federated Learning (HFL) is a distributed machine learning paradigm tailored for multi-tiered computation architectures, which supports massive access of devices' models simultaneously. To enable efficient HFL, it is crucial to design suitable incentive mechanisms to ensure that devices actively participate in local training. However, there are few studies on incentive mechanism design for HFL. In this paper, we design two-level incentive mechanisms for the HFL with a two-tiered computing structure to encourage the participation of entities in each tier in the HFL training. In the lower-level game, we propose a coalition formation game to joint optimize the edge association and bandwidth allocation problem, and obtain efficient coalition partitions by the proposed preference rule, which can be proven to be stable by exact potential game. In the upper-level game, we design the Stackelberg game algorithm, which not only determines the optimal number of edge aggregations for edge servers to maximize their utility, but also optimize the unit reward provided for the edge aggregation performance to ensure the interests of cloud servers. Furthermore, numerical results indicate that the proposed algorithms can achieve better performance than the benchmark schemes.

Memory disaggregation is being considered as a strong alternative to traditional architecture to deal with the memory under-utilization in data centers. Disaggregated memory can adapt to dynamically changing memory requirements for the data center applications like data analytics, big data, etc., that require in-memory processing. However, such systems can face high remote memory access latency due to the interconnect speeds. In this paper, we explore a rack-scale disaggregated memory architecture and discuss the various design aspects. We design a trace-driven simulator that combines an event-based interconnect and a cycle-accurate memory simulator to evaluate the performance of disaggregated memory system at the rack scale. Our study shows that not only the interconnect but the contention in the remote memory queues also adds significantly to remote memory access latency. We introduces a memory allocation policy to reduce the latency compared to the conventional policies. We conduct experiments using various benchmarks with diverse memory access patterns. Our study shows encouraging results towards the rack-scale memory disaggregation and acceptable average memory access latency.

This paper presents an approximate wireless communication scheme for federated learning (FL) model aggregation in the uplink transmission. We consider a realistic channel that reveals bit errors during FL model exchange in wireless networks. Our study demonstrates that random bit errors during model transmission can significantly affect FL performance. To overcome this challenge, we propose an approximate communication scheme based on the mathematical and statistical proof that machine learning (ML) model gradients are bounded under certain constraints. This bound enables us to introduce a novel encoding scheme for float-to-binary representation of gradient values and their QAM constellation mapping. Besides, since FL gradients are error-resilient, the proposed scheme simply delivers gradients with errors when the channel quality is satisfactory, eliminating extensive error-correcting codes and/or retransmission. The direct benefits include less overhead and lower latency. The proposed scheme is well-suited for resource-constrained devices in wireless networks. Through simulations, we show that the proposed scheme is effective in reducing the impact of bit errors on FL performance and saves at least half the time than transmission with error correction and retransmission to achieve the same learning performance. In addition, we investigated the effectiveness of bit protection mechanisms in high-order modulation when gray coding is employed and found that this approach considerably enhances learning performance.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司