Federated learning (FL) is a new distributed learning paradigm, with privacy, utility, and efficiency as its primary pillars. Existing research indicates that it is unlikely to simultaneously attain infinitesimal privacy leakage, utility loss, and efficiency. Therefore, how to find an optimal trade-off solution is the key consideration when designing the FL algorithm. One common way is to cast the trade-off problem as a multi-objective optimization problem, i.e., the goal is to minimize the utility loss and efficiency reduction while constraining the privacy leakage not exceeding a predefined value. However, existing multi-objective optimization frameworks are very time-consuming, and do not guarantee the existence of the Pareto frontier, this motivates us to seek a solution to transform the multi-objective problem into a single-objective problem because it is more efficient and easier to be solved. To this end, in this paper, we propose FedPAC, a unified framework that leverages PAC learning to quantify multiple objectives in terms of sample complexity, such quantification allows us to constrain the solution space of multiple objectives to a shared dimension, so that it can be solved with the help of a single-objective optimization algorithm. Specifically, we provide the results and detailed analyses of how to quantify the utility loss, privacy leakage, privacy-utility-efficiency trade-off, as well as the cost of the attacker from the PAC learning perspective.
Regression analysis under the assumption of monotonicity is a well-studied statistical problem and has been used in a wide range of applications. However, there remains a lack of a broadly applicable methodology that permits information borrowing, for efficiency gains, when jointly estimating multiple monotonic regression functions. We introduce such a methodology by extending the isotonic regression problem presented in the article "The isotonic regression problem and its dual" (Barlow and Brunk, 1972). The presented approach can be applied to both fixed and random designs and any number of explanatory variables (regressors). Our framework penalizes pairwise differences in the values (levels) of the monotonic function estimates, with the weight of penalty being determined based on a statistical test, which results in information being shared across data sets if similarities in the regression functions exist. Function estimates are subsequently derived using an iterative optimization routine that uses existing solution algorithms for the isotonic regression problem. Simulation studies for normally and binomially distributed response data illustrate that function estimates are consistently improved if similarities between functions exist, and are not oversmoothed otherwise. We further apply our methodology to analyse two public health data sets: neonatal mortality data for Porto Alegre, Brazil, and stroke patient data for North West England.
Cross-validation (CV) is one of the most popular tools for assessing and selecting predictive models. However, standard CV suffers from high computational cost when the number of folds is large. Recently, under the empirical risk minimization (ERM) framework, a line of works proposed efficient methods to approximate CV based on the solution of the ERM problem trained on the full dataset. However, in large-scale problems, it can be hard to obtain the exact solution of the ERM problem, either due to limited computational resources or due to early stopping as a way of preventing overfitting. In this paper, we propose a new paradigm to efficiently approximate CV when the ERM problem is solved via an iterative first-order algorithm, without running until convergence. Our new method extends existing guarantees for CV approximation to hold along the whole trajectory of the algorithm, including at convergence, thus generalizing existing CV approximation methods. Finally, we illustrate the accuracy and computational efficiency of our method through a range of empirical studies.
Predict-then-Optimize is a framework for using machine learning to perform decision-making under uncertainty. The central research question it asks is, "How can the structure of a decision-making task be used to tailor ML models for that specific task?" To this end, recent work has proposed learning task-specific loss functions that capture this underlying structure. However, current approaches make restrictive assumptions about the form of these losses and their impact on ML model behavior. These assumptions both lead to approaches with high computational cost, and when they are violated in practice, poor performance. In this paper, we propose solutions to these issues, avoiding the aforementioned assumptions and utilizing the ML model's features to increase the sample efficiency of learning loss functions. We empirically show that our method achieves state-of-the-art results in four domains from the literature, often requiring an order of magnitude fewer samples than comparable methods from past work. Moreover, our approach outperforms the best existing method by nearly 200% when the localness assumption is broken.
The empirical likelihood is a powerful nonparametric tool, that emulates its parametric counterpart -- the parametric likelihood -- preserving many of its large-sample properties. This article tackles the problem of assessing the discriminatory power of three-class diagnostic tests from an empirical likelihood perspective. In particular, we concentrate on interval estimation in a three-class ROC analysis, where a variety of inferential tasks could be of interest. We present novel theoretical results and tailored techniques studied to efficiently solve some of such tasks. Extensive simulation experiments are provided in a supporting role, with our novel proposals compared to existing competitors, when possible. It emerges that our new proposals are extremely flexible, being able to compete with contestants and being the most suited to accommodating flexible distributions for target populations. We illustrate the application of the novel proposals with a real data example. The article ends with a discussion and a presentation of some directions for future research.
Generating facial reactions in a human-human dyadic interaction is complex and highly dependent on the context since more than one facial reactions can be appropriate for the speaker's behaviour. This has challenged existing machine learning (ML) methods, whose training strategies enforce models to reproduce a specific (not multiple) facial reaction from each input speaker behaviour. This paper proposes the first multiple appropriate facial reaction generation framework that re-formulates the one-to-many mapping facial reaction generation problem as a one-to-one mapping problem. This means that we approach this problem by considering the generation of a distribution of the listener's appropriate facial reactions instead of multiple different appropriate facial reactions, i.e., 'many' appropriate facial reaction labels are summarised as 'one' distribution label during training. Our model consists of a perceptual processor, a cognitive processor, and a motor processor. The motor processor is implemented with a novel Reversible Multi-dimensional Edge Graph Neural Network (REGNN). This allows us to obtain a distribution of appropriate real facial reactions during the training process, enabling the cognitive processor to be trained to predict the appropriate facial reaction distribution. At the inference stage, the REGNN decodes an appropriate facial reaction by using this distribution as input. Experimental results demonstrate that our approach outperforms existing models in generating more appropriate, realistic, and synchronized facial reactions. The improved performance is largely attributed to the proposed appropriate facial reaction distribution learning strategy and the use of a REGNN. The code is available at //github.com/TongXu-05/REGNN-Multiple-Appropriate-Facial-Reaction-Generation.
Federated learning algorithms are developed both for efficiency reasons and to ensure the privacy and confidentiality of personal and business data, respectively. Despite no data being shared explicitly, recent studies showed that the mechanism could still leak sensitive information. Hence, secure aggregation is utilized in many real-world scenarios to prevent attribution to specific participants. In this paper, we focus on the quality of individual training datasets and show that such quality information could be inferred and attributed to specific participants even when secure aggregation is applied. Specifically, through a series of image recognition experiments, we infer the relative quality ordering of participants. Moreover, we apply the inferred quality information to detect misbehaviours, to stabilize training performance, and to measure the individual contributions of participants.
Federated learning (FL) approaches for saddle point problems (SPP) have recently gained in popularity due to the critical role they play in machine learning (ML). Existing works mostly target smooth unconstrained objectives in Euclidean space, whereas ML problems often involve constraints or non-smooth regularization, which results in a need for composite optimization. Addressing these issues, we propose Federated Dual Extrapolation (FeDualEx), an extra-step primal-dual algorithm, which is the first of its kind that encompasses both saddle point optimization and composite objectives under the FL paradigm. Both the convergence analysis and the empirical evaluation demonstrate the effectiveness of FeDualEx in these challenging settings. In addition, even for the sequential version of FeDualEx, we provide rates for the stochastic composite saddle point setting which, to our knowledge, are not found in prior literature.
Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.
Imitation learning aims to extract knowledge from human experts' demonstrations or artificially created agents in order to replicate their behaviors. Its success has been demonstrated in areas such as video games, autonomous driving, robotic simulations and object manipulation. However, this replicating process could be problematic, such as the performance is highly dependent on the demonstration quality, and most trained agents are limited to perform well in task-specific environments. In this survey, we provide a systematic review on imitation learning. We first introduce the background knowledge from development history and preliminaries, followed by presenting different taxonomies within Imitation Learning and key milestones of the field. We then detail challenges in learning strategies and present research opportunities with learning policy from suboptimal demonstration, voice instructions and other associated optimization schemes.
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.