亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Anomaly detection is essential in many application domains, such as cyber security, law enforcement, medicine, and fraud protection. However, the decision-making of current deep learning approaches is notoriously hard to understand, which often limits their practical applicability. To overcome this limitation, we propose a framework for learning inherently interpretable anomaly detectors from sequential data. More specifically, we consider the task of learning a deterministic finite automaton (DFA) from a given multi-set of unlabeled sequences. We show that this problem is computationally hard and develop two learning algorithms based on constraint optimization. Moreover, we introduce novel regularization schemes for our optimization problems that improve the overall interpretability of our DFAs. Using a prototype implementation, we demonstrate that our approach shows promising results in terms of accuracy and F1 score.

相關內容

Being able to infer ground truth from the responses of multiple imperfect advisors is a problem of crucial importance in many decision-making applications, such as lending, trading, investment, and crowd-sourcing. In practice, however, gathering answers from a set of advisors has a cost. Therefore, finding an advisor selection strategy that retrieves a reliable answer and maximizes the overall utility is a challenging problem. To address this problem, we propose a novel strategy for optimally selecting a set of advisers in a sequential binary decision-making setting, where multiple decisions need to be made over time. Crucially, we assume no access to ground truth and no prior knowledge about the reliability of advisers. Specifically, our approach considers how to simultaneously (1) select advisors by balancing the advisors' costs and the value of making correct decisions, (2) learn the trustworthiness of advisers dynamically without prior information by asking multiple advisers, and (3) make optimal decisions without access to the ground truth, improving this over time. We evaluate our algorithm through several numerical experiments. The results show that our approach outperforms two other methods that combine state-of-the-art models.

Modern statistical learning algorithms are capable of amazing flexibility, but struggle with interpretability. One possible solution is sparsity: making inference such that many of the parameters are estimated as being identically 0, which may be imposed through the use of nonsmooth penalties such as the $\ell_1$ penalty. However, the $\ell_1$ penalty introduces significant bias when high sparsity is desired. In this article, we retain the $\ell_1$ penalty, but define learnable penalty weights $\lambda_p$ endowed with hyperpriors. We start the article by investigating the optimization problem this poses, developing a proximal operator associated with the $\ell_1$ norm. We then study the theoretical properties of this variable-coefficient $\ell_1$ penalty in the context of penalized likelihood. Next, we investigate application of this penalty to Variational Bayes, developing a model we call the Sparse Bayesian Lasso which allows for behavior qualitatively like Lasso regression to be applied to arbitrary variational models. In simulation studies, this gives us the Uncertainty Quantification and low bias properties of simulation-based approaches with an order of magnitude less computation. Finally, we apply our methodology to a Bayesian lagged spatiotemporal regression model of internal displacement that occurred during the Iraqi Civil War of 2013-2017.

This paper presents a novel RL algorithm, S-REINFORCE, which is designed to generate interpretable policies for dynamic decision-making tasks. The proposed algorithm leverages two types of function approximators, namely Neural Network (NN) and Symbolic Regressor (SR), to produce numerical and symbolic policies, respectively. The NN component learns to generate a numerical probability distribution over the possible actions using a policy gradient, while the SR component captures the functional form that relates the associated states with the action probabilities. The SR-generated policy expressions are then utilized through importance sampling to improve the rewards received during the learning process. We have tested the proposed S-REINFORCE algorithm on various dynamic decision-making problems with low and high dimensional action spaces, and the results demonstrate its effectiveness and impact in achieving interpretable solutions. By leveraging the strengths of both NN and SR, S-REINFORCE produces policies that are not only well-performing but also easy to interpret, making it an ideal choice for real-world applications where transparency and causality are crucial.

Video anomaly detection (VAD) is a vital task with great practical applications in industrial surveillance, security system, and traffic control. Unlike previous unsupervised VAD methods that adopt a fixed structure to learn normality without considering different detection demands, we design a spatial-temporal hierarchical architecture (STHA) as a configurable architecture to flexibly detect different degrees of anomaly. The comprehensive structure of the STHA is delineated into a tripartite hierarchy, encompassing the following tiers: the stream level, the stack level, and the block level. Specifically, we design several auto-encoder-based blocks that possess varying capacities for extracting normal patterns. Then, we stack blocks according to the complexity degrees with both intra-stack and inter-stack residual links to learn hierarchical normality gradually. Considering the multisource knowledge of videos, we also model the spatial normality of video frames and temporal normality of RGB difference by designing two parallel streams consisting of stacks. Thus, STHA can provide various representation learning abilities by expanding or contracting hierarchically to detect anomalies of different degrees. Since the anomaly set is complicated and unbounded, our STHA can adjust its detection ability to adapt to the human detection demands and the complexity degree of anomaly that happened in the history of a scene. We conduct experiments on three benchmarks and perform extensive analysis, and the results demonstrate that our method performs comparablely to the state-of-the-art methods. In addition, we design a toy dataset to prove that our model can better balance the learning ability to adapt to different detection demands.

Multi-task learning based video anomaly detection methods combine multiple proxy tasks in different branches to detect video anomalies in different situations. Most existing methods either do not combine complementary tasks to effectively cover all motion patterns, or the class of the objects is not explicitly considered. To address the aforementioned shortcomings, we propose a novel multi-task learning based method that combines complementary proxy tasks to better consider the motion and appearance features. We combine the semantic segmentation and future frame prediction tasks in a single branch to learn the object class and consistent motion patterns, and to detect respective anomalies simultaneously. In the second branch, we added several attention mechanisms to detect motion anomalies with attention to object parts, the direction of motion, and the distance of the objects from the camera. Our qualitative results show that the proposed method considers the object class effectively and learns motion with attention to the aforementioned important factors which results in a precise motion modeling and a better motion anomaly detection. Additionally, quantitative results show the superiority of our method compared with state-of-the-art methods.

We investigate the approximation of high-dimensional target measures as low-dimensional updates of a dominating reference measure. This approximation class replaces the associated density with the composition of: (i) a feature map that identifies the leading principal components or features of the target measure, relative to the reference, and (ii) a low-dimensional profile function. When the reference measure satisfies a subspace $\phi$-Sobolev inequality, we construct a computationally tractable approximation that yields certifiable error guarantees with respect to the Amari $\alpha$-divergences. Our construction proceeds in two stages. First, for any feature map and any $\alpha$-divergence, we obtain an analytical expression for the optimal profile function. Second, for linear feature maps, the principal features are obtained from eigenvectors of a matrix involving gradients of the log-density. Neither step requires explicit access to normalizing constants. Notably, by leveraging the $\phi$-Sobolev inequalities, we demonstrate that these features universally certify approximation errors across the range of $\alpha$-divergences $\alpha \in (0,1]$. We then propose an application to Bayesian inverse problems and provide an analogous construction with approximation guarantees that hold in expectation over the data. We conclude with an extension of the proposed dimension reduction strategy to nonlinear feature maps.

This paper introduces a novel Bayesian approach to detect changes in the variance of a Gaussian sequence model, focusing on quantifying the uncertainty in the change point locations and providing a scalable algorithm for inference. Such a measure of uncertainty is necessary when change point methods are deployed in sensitive applications, for example, when one is interested in determining whether an organ is viable for transplant. The key of our proposal is framing the problem as a product of multiple single changes in the scale parameter. We fit the model through an iterative procedure similar to what is done for additive models. The novelty is that each iteration returns a probability distribution on time instances, which captures the uncertainty in the change point location. Leveraging a recent result in the literature, we can show that our proposal is a variational approximation of the exact model posterior distribution. We study the algorithm's convergence and the change point localization rate. Extensive experiments in simulation studies illustrate the performance of our method and the possibility of generalizing it to more complex data-generating mechanisms. We apply the new model to an experiment involving a novel technique to assess the viability of a liver and oceanographic data.

Multimodal misinformation on online social platforms is becoming a critical concern due to increasing credibility and easier dissemination brought by multimedia content, compared to traditional text-only information. While existing multimodal detection approaches have achieved high performance, the lack of interpretability hinders these systems' reliability and practical deployment. Inspired by NeuralSymbolic AI which combines the learning ability of neural networks with the explainability of symbolic learning, we propose a novel logic-based neural model for multimodal misinformation detection which integrates interpretable logic clauses to express the reasoning process of the target task. To make learning effective, we parameterize symbolic logical elements using neural representations, which facilitate the automatic generation and evaluation of meaningful logic clauses. Additionally, to make our framework generalizable across diverse misinformation sources, we introduce five meta-predicates that can be instantiated with different correlations. Results on three public datasets (Twitter, Weibo, and Sarcasm) demonstrate the feasibility and versatility of our model.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

The considerable significance of Anomaly Detection (AD) problem has recently drawn the attention of many researchers. Consequently, the number of proposed methods in this research field has been increased steadily. AD strongly correlates with the important computer vision and image processing tasks such as image/video anomaly, irregularity and sudden event detection. More recently, Deep Neural Networks (DNNs) offer a high performance set of solutions, but at the expense of a heavy computational cost. However, there is a noticeable gap between the previously proposed methods and an applicable real-word approach. Regarding the raised concerns about AD as an ongoing challenging problem, notably in images and videos, the time has come to argue over the pitfalls and prospects of methods have attempted to deal with visual AD tasks. Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods. We also discuss current challenges and future research directions thoroughly.

北京阿比特科技有限公司