Statistical measures for group fairness in machine learning reflect the gap in performance of algorithms across different groups. These measures, however, exhibit a high variance between different training instances, which makes them unreliable for empirical evaluation of fairness. What causes this high variance? We investigate the impact on group fairness of different sources of randomness in training neural networks. We show that the variance in group fairness measures is rooted in the high volatility of the learning process on under-represented groups. Further, we recognize the dominant source of randomness as the stochasticity of data order during training. Based on these findings, we show how one can control group-level accuracy (i.e., model fairness), with high efficiency and negligible impact on the model's overall performance, by simply changing the data order for a single epoch.
A machine learning approach is presented to accelerate the computation of block polymer morphology evolution for large domains over long timescales. The strategy exploits the separation of characteristic times between coarse-grained particle evolution on the monomer scale and slow morphological evolution over mesoscopic scales. In contrast to empirical continuum models, the proposed approach learns stochastically driven defect annihilation processes directly from particle-based simulations. A UNet architecture that respects different boundary conditions is adopted, thereby allowing periodic and fixed substrate boundary conditions of arbitrary shape. Physical concepts are also introduced via the loss function and symmetries are incorporated via data augmentation. The model is validated using three different use cases. Explainable artificial intelligence methods are applied to visualize the morphology evolution over time. This approach enables the generation of large system sizes and long trajectories to investigate defect densities and their evolution under different types of confinement. As an application, we demonstrate the importance of accessing late-stage morphologies for understanding particle diffusion inside a single block. This work has implications for directed self-assembly and materials design in micro-electronics, battery materials, and membranes.
Ordinary differential equations (ODEs) are foundational in modeling intricate dynamics across a gamut of scientific disciplines. Yet, a possibility to represent a single phenomenon through multiple ODE models, driven by different understandings of nuances in internal mechanisms or abstraction levels, presents a model selection challenge. This study introduces a testing-based approach for ODE model selection amidst statistical noise. Rooted in the model misspecification framework, we adapt foundational insights from classical statistical paradigms (Vuong and Hotelling) to the ODE context, allowing for the comparison and ranking of diverse causal explanations without the constraints of nested models. Our simulation studies validate the theoretical robustness of our proposed test, revealing its consistent size and power. Real-world data examples further underscore the algorithm's applicability in practice. To foster accessibility and encourage real-world applications, we provide a user-friendly Python implementation of our model selection algorithm, bridging theoretical advancements with hands-on tools for the scientific community.
Physics informed neural networks (PINNs) represent a very powerful class of numerical solvers for partial differential equations using deep neural networks, and have been successfully applied to many diverse problems. However, when applying the method to problems involving singularity, e.g., point sources or geometric singularities, the obtained approximations often have low accuracy, due to limited regularity of the exact solution. In this work, we investigate PINNs for solving Poisson equations in polygonal domains with geometric singularities and mixed boundary conditions. We propose a novel singularity enriched PINN (SEPINN), by explicitly incorporating the singularity behavior of the analytic solution, e.g., corner singularity, mixed boundary condition and edge singularities, into the ansatz space, and present a convergence analysis of the scheme. We present extensive numerical simulations in two and three-dimensions to illustrate the efficiency of the method, and also a comparative study with existing neural network based approaches.
We develop a theoretical framework for the analysis of oblique decision trees, where the splits at each decision node occur at linear combinations of the covariates (as opposed to conventional tree constructions that force axis-aligned splits involving only a single covariate). While this methodology has garnered significant attention from the computer science and optimization communities since the mid-80s, the advantages they offer over their axis-aligned counterparts remain only empirically justified, and explanations for their success are largely based on heuristics. Filling this long-standing gap between theory and practice, we show that oblique regression trees (constructed by recursively minimizing squared error) satisfy a type of oracle inequality and can adapt to a rich library of regression models consisting of linear combinations of ridge functions and their limit points. This provides a quantitative baseline to compare and contrast decision trees with other less interpretable methods, such as projection pursuit regression and neural networks, which target similar model forms. Contrary to popular belief, one need not always trade-off interpretability with accuracy. Specifically, we show that, under suitable conditions, oblique decision trees achieve similar predictive accuracy as neural networks for the same library of regression models. To address the combinatorial complexity of finding the optimal splitting hyperplane at each decision node, our proposed theoretical framework can accommodate many existing computational tools in the literature. Our results rely on (arguably surprising) connections between recursive adaptive partitioning and sequential greedy approximation algorithms for convex optimization problems (e.g., orthogonal greedy algorithms), which may be of independent theoretical interest. Using our theory and methods, we also study oblique random forests.
User-side group fairness is crucial for modern recommender systems, as it aims to alleviate performance disparity between groups of users defined by sensitive attributes such as gender, race, or age. We find that the disparity tends to persist or even increase over time. This calls for effective ways to address user-side fairness in a dynamic environment, which has been infrequently explored in the literature. However, fairness-constrained re-ranking, a typical method to ensure user-side fairness (i.e., reducing performance disparity), faces two fundamental challenges in the dynamic setting: (1) non-differentiability of the ranking-based fairness constraint, which hinders the end-to-end training paradigm, and (2) time-inefficiency, which impedes quick adaptation to changes in user preferences. In this paper, we propose FAir Dynamic rEcommender (FADE), an end-to-end framework with fine-tuning strategy to dynamically alleviate performance disparity. To tackle the above challenges, FADE uses a novel fairness loss designed to be differentiable and lightweight to fine-tune model parameters to ensure both user-side fairness and high-quality recommendations. Via extensive experiments on the real-world dataset, we empirically demonstrate that FADE effectively and efficiently reduces performance disparity, and furthermore, FADE improves overall recommendation quality over time compared to not using any new data.
Given imbalanced data, it is hard to train a good classifier using deep learning because of the poor generalization of minority classes. Traditionally, the well-known synthetic minority oversampling technique (SMOTE) for data augmentation, a data mining approach for imbalanced learning, has been used to improve this generalization. However, it is unclear whether SMOTE also benefits deep learning. In this work, we study why the original SMOTE is insufficient for deep learning, and enhance SMOTE using soft labels. Connecting the resulting soft SMOTE with Mixup, a modern data augmentation technique, leads to a unified framework that puts traditional and modern data augmentation techniques under the same umbrella. A careful study within this framework shows that Mixup improves generalization by implicitly achieving uneven margins between majority and minority classes. We then propose a novel margin-aware Mixup technique that more explicitly achieves uneven margins. Extensive experimental results demonstrate that our proposed technique yields state-of-the-art performance on deep imbalanced classification while achieving superior performance on extremely imbalanced data. The code is open-sourced in our developed package //github.com/ntucllab/imbalanced-DL to foster future research in this direction.
The quantum alternating operator ansatz (QAOA) is a heuristic hybrid quantum-classical algorithm for finding high-quality approximate solutions to combinatorial optimization problems, such as Maximum Satisfiability. While QAOA is well-studied, theoretical results as to its runtime or approximation ratio guarantees are still relatively sparse. We provide some of the first lower bounds for the number of rounds (the dominant component of QAOA runtimes) required for QAOA. For our main result, (i) we leverage a connection between quantum annealing times and the angles of QAOA to derive a lower bound on the number of rounds of QAOA with respect to the guaranteed approximation ratio. We apply and calculate this bound with Grover-style mixing unitaries and (ii) show that this type of QAOA requires at least a polynomial number of rounds to guarantee any constant approximation ratios for most problems. We also (iii) show that the bound depends only on the statistical values of the objective functions, and when the problem can be modeled as a $k$-local Hamiltonian, can be easily estimated from the coefficients of the Hamiltonians. For the conventional transverse field mixer, (iv) our framework gives a trivial lower bound to all bounded occurrence local cost problems and all strictly $k$-local cost Hamiltonians matching known results that constant approximation ratio is obtainable with constant round QAOA for a few optimization problems from these classes. Using our novel proof framework, (v) we recover the Grover lower bound for unstructured search and -- with small modification -- show that our bound applies to any QAOA-style search protocol that starts in the ground state of the mixing unitaries.
Dynamically scheduled high-level synthesis (HLS) achieves higher throughput than static HLS for codes with unpredictable memory accesses and control flow. However, excessive dataflow scheduling results in circuits that use more resources and have a slower critical path, even when only a part of the circuit exhibits dynamic behavior. Recent work has shown that marking parts of a dataflow circuit for static scheduling can save resources and improve performance (hybrid scheduling), but the dynamic part of the circuit still bottlenecks the critical path. We propose instead to selectively introduce dynamic scheduling into static HLS. This paper presents an algorithm for identifying code regions amenable to dynamic scheduling and shows a methodology for introducing dynamically scheduled basic blocks, loops, and memory operations into static HLS. Our algorithm is informed by modulo-scheduling and can be integrated into any modulo-scheduled HLS tool. On a set of ten benchmarks, we show that our approach achieves on average an up to 3.7$\times$ and 3$\times$ speedup against dynamic and hybrid scheduling, respectively, with an area overhead of 1.3$\times$ and frequency degradation of 0.74$\times$ when compared to static HLS.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.