亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We analyze an extended model of the Iterated Prisoner's Dilemma where agents decide to play based on the data from their limited memory or on recommendation. The cooperators can decide whether to play with the matched opponent or not. The decisions of agents are directly linked to their optimism level since they decide to play if they believe the opponent has a high probability to cooperate. Optimism is precisely tuned by parameters named as optimism threshold and tolerance. Our experiment showed that being optimistic is better as it leads to more accurate judgments whereas acting pessimistic results in biased decisions.

相關內容

In an interdomain network, autonomous systems (ASes) often establish peering agreements, so that one AS (agreement consumer) can influence the routing policies of the other AS (agreement provider). Peering agreements are implemented in the BGP configuration of the agreement provider. It is crucial to verify their implementation because one error can lead to disastrous consequences. However, the fundamental challenge for peering agreement verification is how to preserve the privacy of both ASes involved in the agreement. To this end, this paper presents IVeri, the first privacy-preserving interdomain agreement verification system. IVeri models the interdomain agreement verification problem as a SAT formula, and develops a novel, efficient, privacy-serving SAT solver, which uses oblivious shuffling and garbled circuits as the key building blocks to let the agreement consumer and provider collaboratively verify the implementation of interdomain peering agreements without exposing their private information. A prototype of IVeri is implemented and evaluated extensively. Results show that IVeri achieves accurate, privacy-preserving interdomain agreement verification with reasonable overhead.

Missing data is a systemic problem in practical scenarios that causes noise and bias when estimating treatment effects. This makes treatment effect estimation from data with missingness a particularly tricky endeavour. A key reason for this is that standard assumptions on missingness are rendered insufficient due to the presence of an additional variable, treatment, besides the individual and the outcome. Having a treatment variable introduces additional complexity with respect to why some variables are missing that is not fully explored by previous work. In our work we identify a new missingness mechanism, which we term mixed confounded missingness (MCM), where some missingness determines treatment selection and other missingness is determined by treatment selection. Given MCM, we show that naively imputing all data leads to poor performing treatment effects models, as the act of imputation effectively removes information necessary to provide unbiased estimates. However, no imputation at all also leads to biased estimates, as missingness determined by treatment divides the population in distinct subpopulations, where estimates across these populations will be biased. Our solution is selective imputation, where we use insights from MCM to inform precisely which variables should be imputed and which should not. We empirically demonstrate how various learners benefit from selective imputation compared to other solutions for missing data.

As is known, AGI (Artificial General Intelligence), unlike AI, should operate with meanings. And that's what distinguishes it from AI. Any successful AI implementations (playing chess, unmanned driving, face recognition etc.) do not operate with the meanings of the processed objects in any way and do not recognize the meaning. And they don't need to. But for AGI, which emulates human thinking, this ability is crucial. Numerous attempts to define the concept of "meaning" have one very significant drawback - all such definitions are not strict and formalized, so they cannot be programmed. The meaning search procedure should use a formalized description of its existence and possible forms of its perception. For the practical implementation of AGI, it is necessary to develop such "ready-to-code" descriptions in the context of their use for processing the related cognitive concepts of "meaning" and "knowledge". An attempt to formalize the definition of such concepts is made in this article.

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

To drive purchase in online advertising, it is of the advertiser's great interest to optimize the sequential advertising strategy whose performance and interpretability are both important. The lack of interpretability in existing deep reinforcement learning methods makes it not easy to understand, diagnose and further optimize the strategy. In this paper, we propose our Deep Intents Sequential Advertising (DISA) method to address these issues. The key part of interpretability is to understand a consumer's purchase intent which is, however, unobservable (called hidden states). In this paper, we model this intention as a latent variable and formulate the problem as a Partially Observable Markov Decision Process (POMDP) where the underlying intents are inferred based on the observable behaviors. Large-scale industrial offline and online experiments demonstrate our method's superior performance over several baselines. The inferred hidden states are analyzed, and the results prove the rationality of our inference.

One of the ultimate goals of e-commerce platforms is to satisfy various shopping needs for their customers. Much efforts are devoted to creating taxonomies or ontologies in e-commerce towards this goal. However, user needs in e-commerce are still not well defined, and none of the existing ontologies has the enough depth and breadth for universal user needs understanding. The semantic gap in-between prevents shopping experience from being more intelligent. In this paper, we propose to construct a large-scale e-commerce cognitive concept net named "AliCoCo", which is practiced in Alibaba, the largest Chinese e-commerce platform in the world. We formally define user needs in e-commerce, then conceptualize them as nodes in the net. We present details on how AliCoCo is constructed semi-automatically and its successful, ongoing and potential applications in e-commerce.

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

Understanding latent user needs beneath shopping behaviors is critical to e-commercial applications. Without a proper definition of user needs in e-commerce, most industry solutions are not driven directly by user needs at current stage, which prevents them from further improving user satisfaction. Representing implicit user needs explicitly as nodes like "outdoor barbecue" or "keep warm for kids" in a knowledge graph, provides new imagination for various e- commerce applications. Backed by such an e-commerce knowledge graph, we propose a supervised learning algorithm to conceptualize user needs from their transaction history as "concept" nodes in the graph and infer those concepts for each user through a deep attentive model. Offline experiments demonstrate the effectiveness and stability of our model, and online industry strength tests show substantial advantages of such user needs understanding.

Existing research on response generation for chatbot focuses on \textbf{First Response Generation} which aims to teach the chatbot to say the first response (e.g. a sentence) appropriate to the conversation context (e.g. the user's query). In this paper, we introduce a new task \textbf{Second Response Generation}, termed as Improv chat, which aims to teach the chatbot to say the second response after saying the first response with respect the conversation context, so as to lighten the burden on the user to keep the conversation going. Specifically, we propose a general learning based framework and develop a retrieval based system which can generate the second responses with the users' query and the chatbot's first response as input. We present the approach to building the conversation corpus for Improv chat from public forums and social networks, as well as the neural networks based models for response matching and ranking. We include the preliminary experiments and results in this paper. This work could be further advanced with better deep matching models for retrieval base systems or generative models for generation based systems as well as extensive evaluations in real-life applications.

When a recurrent neural network language model is used for caption generation, the image information can be fed to the neural network either by directly incorporating it in the RNN -- conditioning the language model by `injecting' image features -- or in a layer following the RNN -- conditioning the language model by `merging' image features. While both options are attested in the literature, there is as yet no systematic comparison between the two. In this paper we empirically show that it is not especially detrimental to performance whether one architecture is used or another. The merge architecture does have practical advantages, as conditioning by merging allows the RNN's hidden state vector to shrink in size by up to four times. Our results suggest that the visual and linguistic modalities for caption generation need not be jointly encoded by the RNN as that yields large, memory-intensive models with few tangible advantages in performance; rather, the multimodal integration should be delayed to a subsequent stage.

北京阿比特科技有限公司