This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.
This paper demonstrates a self-supervised framework for learning voxel-wise coarse-to-fine representations tailored for dense downstream tasks. Our approach stems from the observation that existing methods for hierarchical representation learning tend to prioritize global features over local features due to inherent architectural bias. To address this challenge, we devise a training strategy that balances the contributions of features from multiple scales, ensuring that the learned representations capture both coarse and fine-grained details. Our strategy incorporates 3-fold improvements: (1) local data augmentations, (2) a hierarchically balanced architecture, and (3) a hybrid contrastive-restorative loss function. We evaluate our method on CT and MRI data and demonstrate that our new approach particularly beneficial for fine-tuning with limited annotated data and consistently outperforms the baseline counterpart in linear evaluation settings.
Naming tests represent an essential tool in gauging the severity of aphasia and monitoring the trajectory of recovery for individuals afflicted with this debilitating condition. In these assessments, patients are presented with images corresponding to common nouns, and their responses are evaluated for accuracy. The Philadelphia Naming Test (PNT) stands as a paragon in this domain, offering nuanced insights into the type of errors made in responses. In a groundbreaking advancement, Walker et al. (2018) introduced a model rooted in Item Response Theory and multinomial processing trees (MPT-IRT). This innovative approach seeks to unravel the intricate mechanisms underlying the various errors patients make when responding to an item, aiming to pinpoint the specific stage of word production where a patient's capability falters. However, given the sophisticated nature of the IRT-MPT model proposed by Walker et al. (2018), it is imperative to scrutinize both its conceptual as well as its statistical validity. Our endeavor here is to closely examine the model's formulation to ensure its parameters are identifiable as a first step in evaluating its validity.
Document representation is the core of many NLP tasks on machine understanding. A general representation learned in an unsupervised manner reserves generality and can be used for various applications. In practice, sentiment analysis (SA) has been a challenging task that is regarded to be deeply semantic-related and is often used to assess general representations. Existing methods on unsupervised document representation learning can be separated into two families: sequential ones, which explicitly take the ordering of words into consideration, and non-sequential ones, which do not explicitly do so. However, both of them suffer from their own weaknesses. In this paper, we propose a model that overcomes difficulties encountered by both families of methods. Experiments show that our model outperforms state-of-the-art methods on popular SA datasets and a fine-grained aspect-based SA by a large margin.
While chain-of-thought (CoT) prompting has revolutionized how LLMs perform reasoning tasks, its current methods and variations (e.g, Self-consistency, ReACT, Reflexion, Tree-of-Thoughts (ToT), Cumulative Reasoning (CR)) suffer from limitations like slowness, limited context grounding, hallucination and inconsistent outputs. To overcome these challenges, we introduce Evidence to Generate (E2G), a novel single-agent, two-step prompting framework. Instead of unverified reasoning claims, this innovative approach leverages the power of "evidence for decision making" by first focusing exclusively on the thought sequences (the series of intermediate steps) explicitly mentioned in the context which then serve as extracted evidence, guiding the LLM's output generation process with greater precision and efficiency. This simple yet powerful approach unlocks the true potential of chain-of-thought like prompting, paving the way for faster, more reliable, and more contextually aware reasoning in LLMs. \tool achieves remarkable results robustly across a wide range of knowledge-intensive reasoning and generation tasks, surpassing baseline approaches with state-of-the-art LLMs. For example, (i) on LogiQA benchmark using GPT-4 as backbone model, \tool achieves a new state-of-the Accuracy of 53.8% exceeding CoT by 18%, ToT by 11%, CR by 9% (ii) a variant of E2G with PaLM2 outperforms the variable-shot performance of Gemini Ultra by 0.9 F1 points, reaching an F1 score of 83.3 on a subset of DROP.
In order to investigate the relationship between Shannon information measure of random variables, scholars such as Yeung utilized information diagrams to explore the structured representation of information measures, establishing correspondences with sets. However, this method has limitations when studying information measures of five or more random variables. In this paper, we consider employing algebraic methods to study the relationship of information measures of random variables. By introducing a semiring generated by random variables, we establish correspondences between sets and elements of the semiring. Utilizing the Grobner-Shirshov basis, we present the structure of the semiring and its standard form. Furthermore, we delve into the structure of the semiring generated under Markov chain conditions (referred to as Markov semiring), obtaining its standard form.
Gait benchmarks empower the research community to train and evaluate high-performance gait recognition systems. Even though growing efforts have been devoted to cross-view recognition, academia is restricted by current existing databases captured in the controlled environment. In this paper, we contribute a new benchmark and strong baseline for Gait REcognition in the Wild (GREW). The GREW dataset is constructed from natural videos, which contain hundreds of cameras and thousands of hours of streams in open systems. With tremendous manual annotations, the GREW consists of 26K identities and 128K sequences with rich attributes for unconstrained gait recognition. Moreover, we add a distractor set of over 233K sequences, making it more suitable for real-world applications. Compared with prevailing predefined cross-view datasets, the GREW has diverse and practical view variations, as well as more naturally challenging factors. To the best of our knowledge, this is the first large-scale dataset for gait recognition in the wild. Equipped with this benchmark, we dissect the unconstrained gait recognition problem, where representative appearance-based and model-based methods are explored. The proposed GREW benchmark proves to be essential for both training and evaluating gait recognizers in unconstrained scenarios. In addition, we propose the Single Path One-Shot neural architecture search with uniform sampling for Gait recognition, named SPOSGait, which is the first NAS-based gait recognition model. In experiments, SPOSGait achieves state-of-the-art performance on the CASIA-B, OU-MVLP, Gait3D, and GREW benchmarks, outperforming existing approaches by a large margin. The code will be released at //github.com/XiandaGuo/SPOSGait.
This paper explores the transformative potential of artificial intelligence (AI) in the context of sustainable agricultural development across diverse regions in Africa. Delving into opportunities, challenges, and impact, the study navigates through the dynamic landscape of AI applications in agriculture. Opportunities such as precision farming, crop monitoring, and climate-resilient practices are examined, alongside challenges related to technological infrastructure, data accessibility, and skill gaps. The article analyzes the impact of AI on smallholder farmers, supply chains, and inclusive growth. Ethical considerations and policy implications are also discussed, offering insights into responsible AI integration. By providing a nuanced understanding, this paper contributes to the ongoing discourse on leveraging AI for fostering sustainability in African agriculture.
This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.
This paper reports Deep LOGISMOS approach to 3D tumor segmentation by incorporating boundary information derived from deep contextual learning to LOGISMOS - layered optimal graph image segmentation of multiple objects and surfaces. Accurate and reliable tumor segmentation is essential to tumor growth analysis and treatment selection. A fully convolutional network (FCN), UNet, is first trained using three adjacent 2D patches centered at the tumor, providing contextual UNet segmentation and probability map for each 2D patch. The UNet segmentation is then refined by Gaussian Mixture Model (GMM) and morphological operations. The refined UNet segmentation is used to provide the initial shape boundary to build a segmentation graph. The cost for each node of the graph is determined by the UNet probability maps. Finally, a max-flow algorithm is employed to find the globally optimal solution thus obtaining the final segmentation. For evaluation, we applied the method to pancreatic tumor segmentation on a dataset of 51 CT scans, among which 30 scans were used for training and 21 for testing. With Deep LOGISMOS, DICE Similarity Coefficient (DSC) and Relative Volume Difference (RVD) reached 83.2+-7.8% and 18.6+-17.4% respectively, both are significantly improved (p<0.05) compared with contextual UNet and/or LOGISMOS alone.