亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Background. Due to the widespread adoption of Artificial Intelligence (AI) and Machine Learning (ML) for building software applications, companies are struggling to recruit employees with a deep understanding of such technologies. In this scenario, AutoML is soaring as a promising solution to fill the AI/ML skills gap since it promises to automate the building of end-to-end AI/ML pipelines that would normally be engineered by specialized team members. Aims. Despite the growing interest and high expectations, there is a dearth of information about the extent to which AutoML is currently adopted by teams developing AI/ML-enabled systems and how it is perceived by practitioners and researchers. Method. To fill these gaps, in this paper, we present a mixed-method study comprising a benchmark of 12 end-to-end AutoML tools on two SE datasets and a user survey with follow-up interviews to further our understanding of AutoML adoption and perception. Results. We found that AutoML solutions can generate models that outperform those trained and optimized by researchers to perform classification tasks in the SE domain. Also, our findings show that the currently available AutoML solutions do not live up to their names as they do not equally support automation across the stages of the ML development workflow and for all the team members. Conclusions. We derive insights to inform the SE research community on how AutoML can facilitate their activities and tool builders on how to design the next generation of AutoML technologies.

相關內容

Variable-to-variable length (VV) codes are a class of lossless source coding. As their name implies, VV codes encode a variable-length sequence of source symbols into a variable-length codeword. This paper will give a complete proof of an important theorem for variable-to-variable length codes.

Large language models (large LMs) are increasingly trained on massive codebases and used to generate code. However, LMs lack awareness of security and are found to frequently produce unsafe code. This work studies the security of LMs along two important axes: (i) security hardening, which aims to enhance LMs' reliability in generating secure code, and (ii) adversarial testing, which seeks to evaluate LMs' security at an adversarial standpoint. We address both of these by formulating a new security task called controlled code generation. The task is parametric and takes as input a binary property to guide the LM to generate secure or unsafe code, while preserving the LM's capability of generating functionally correct code. We propose a novel learning-based approach called SVEN to solve this task. SVEN leverages property-specific continuous vectors to guide program generation towards the given property, without modifying the LM's weights. Our training procedure optimizes these continuous vectors by enforcing specialized loss terms on different regions of code, using a high-quality dataset carefully curated by us. Our extensive evaluation shows that SVEN is highly effective in achieving strong security control. For instance, a state-of-the-art CodeGen LM with 2.7B parameters generates secure code for 59.1% of the time. When we employ SVEN to perform security hardening (or adversarial testing) on this LM, the ratio is significantly boosted to 92.3% (or degraded to 36.8%). Importantly, SVEN closely matches the original LMs in functional correctness.

The use of modern Natural Language Processing (NLP) techniques has shown to be beneficial for software engineering tasks, such as vulnerability detection and type inference. However, training deep NLP models requires significant computational resources. This paper explores techniques that aim at achieving the best usage of resources and available information in these models. We propose a generic approach, EarlyBIRD, to build composite representations of code from the early layers of a pre-trained transformer model. We empirically investigate the viability of this approach on the CodeBERT model by comparing the performance of 12 strategies for creating composite representations with the standard practice of only using the last encoder layer. Our evaluation on four datasets shows that several early layer combinations yield better performance on defect detection, and some combinations improve multi-class classification. More specifically, we obtain a +2 average improvement of detection accuracy on Devign with only 3 out of 12 layers of CodeBERT and a 3.3x speed-up of fine-tuning. These findings show that early layers can be used to obtain better results using the same resources, as well as to reduce resource usage during fine-tuning and inference.

With the advances in machine learning, there is a growing interest in AI-enabled tools for autocompleting source code. GitHub Copilot has been trained on billions of lines of open source GitHub code, and is one of such tools that has been increasingly used since its launch in June 2021. However, little effort has been devoted to understanding the practices, challenges, and expected features of using Copilot in programming for auto-completed source code from the point of view of practitioners. To this end, we conducted an empirical study by collecting and analyzing the data from Stack Overflow (SO) and GitHub Discussions. We searched and manually collected 303 SO posts and 927 GitHub discussions related to the usage of Copilot. We identified the programming languages, Integrated Development Environments (IDEs), technologies used with Copilot, functions implemented, benefits, limitations, and challenges when using Copilot. The results show that when practitioners use Copilot: (1) The major programming languages used with Copilot are JavaScript and Python, (2) the main IDE used with Copilot is Visual Studio Code, (3) the most common used technology with Copilot is Node.js, (4) the leading function implemented by Copilot is data processing, (5) the main purpose of users using Copilot is to help generate code, (6) the significant benefit of using Copilot is useful code generation, (7) the main limitation encountered by practitioners when using Copilot is difficulty of integration, and (8) the most common expected feature is that Copilot can be integrated with more IDEs. Our results suggest that using Copilot is like a double-edged sword, which requires developers to carefully consider various aspects when deciding whether or not to use it. Our study provides empirically grounded foundations that could inform developers and practitioners, as well as provide a basis for future investigations.

The security vulnerability of the Vadai, Mingesz, and Gingl (VMG) Kirchhoff-Law-Johnson-Noise (KLJN) key exchanger, as presented in the publication "Nature, Science Report 5 (2015) 13653," has been exposed to transient attacks. Recently an effective defense protocol was introduced (Appl. Phys. Lett. 122 (2023) 143503) to counteract mean-square voltage-based (or mean-square current-based) transient attacks targeted at the ideal KLJN framework. In the present study, this same mitigation methodology has been employed to fortify the security of the VMG-KLJN key exchanger. It is worth noting that the protective measures need to be separately implemented for the HL and LH scenarios. This conceptual framework is corroborated through computer simulations, demonstrating that the application of this defensive technique substantially mitigates information leakage to a point of insignificance.

We present an expanded study of the performance of FLASH when using Linux Kernel Hugepages on Ookami, an HPE Apollo 80 A64FX platform. FLASH is a multi-scale, multi-physics simulation code written principally in modern Fortran and makes use of the PARAMESH library to manage a block-structured adaptive mesh. Our initial study used only the Fujitsu compiler to utilize standard hugepages (hp), but further investigation allowed us to utilize hp for multiple compilers by linking to the Fujitsu library libmpg and transparent hugepages (thp) by enabling it at the node level. By comparing the results of hardware counters and in-code timers, we found that hp and thp do not significantly impact the runtime performance of FLASH. Interestingly, there is a significant reduction in the TLB misses, differences in cache and memory access counters, and strange behavior is observed when using thp.

Satellite Image Time Series (SITS) representation learning is complex due to high spatiotemporal resolutions, irregular acquisition times, and intricate spatiotemporal interactions. These challenges result in specialized neural network architectures tailored for SITS analysis. The field has witnessed promising results achieved by pioneering researchers, but transferring the latest advances or established paradigms from Computer Vision (CV) to SITS is still highly challenging due to the existing suboptimal representation learning framework. In this paper, we develop a novel perspective of SITS processing as a direct set prediction problem, inspired by the recent trend in adopting query-based transformer decoders to streamline the object detection or image segmentation pipeline. We further propose to decompose the representation learning process of SITS into three explicit steps: collect-update-distribute, which is computationally efficient and suits for irregularly-sampled and asynchronous temporal satellite observations. Facilitated by the unique reformulation, our proposed temporal learning backbone of SITS, initially pre-trained on the resource efficient pixel-set format and then fine-tuned on the downstream dense prediction tasks, has attained new state-of-the-art (SOTA) results on the PASTIS benchmark dataset. Specifically, the clear separation between temporal and spatial components in the semantic/panoptic segmentation pipeline of SITS makes us leverage the latest advances in CV, such as the universal image segmentation architecture, resulting in a noticeable 2.5 points increase in mIoU and 8.8 points increase in PQ, respectively, compared to the best scores reported so far.

Deep Neural Networks (DNNs) are becoming a crucial component of modern software systems, but they are prone to fail under conditions that are different from the ones observed during training (out-of-distribution inputs) or on inputs that are truly ambiguous, i.e., inputs that admit multiple classes with nonzero probability in their labels. Recent work proposed DNN supervisors to detect high-uncertainty inputs before their possible misclassification leads to any harm. To test and compare the capabilities of DNN supervisors, researchers proposed test generation techniques, to focus the testing effort on high-uncertainty inputs that should be recognized as anomalous by supervisors. However, existing test generators aim to produce out-of-distribution inputs. No existing model- and supervisor independent technique targets the generation of truly ambiguous test inputs, i.e., inputs that admit multiple classes according to expert human judgment. In this paper, we propose a novel way to generate ambiguous inputs to test DNN supervisors and used it to empirically compare several existing supervisor techniques. In particular, we propose AmbiGuess to generate ambiguous samples for image classification problems. AmbiGuess is based on gradient-guided sampling in the latent space of a regularized adversarial autoencoder. Moreover, we conducted what is -- to the best of our knowledge -- the most extensive comparative study of DNN supervisors, considering their capabilities to detect 4 distinct types of high-uncertainty inputs, including truly ambiguous ones. We find that the tested supervisors' capabilities are complementary: Those best suited to detect true ambiguity perform worse on invalid, out-of-distribution and adversarial inputs and vice-versa.

Malware authors often use cryptographic tools such as XOR encryption and block ciphers like AES to obfuscate part of the malware to evade detection. Use of cryptography may give the impression that these obfuscation techniques have some provable guarantees of success. In this paper, we take a closer look at the use of cryptographic tools to obfuscate malware. We first find that most techniques are easy to defeat (in principle), since the decryption algorithm and the key is shipped within the program. In order to clearly define an obfuscation technique's potential to evade detection we propose a principled definition of malware obfuscation, and then categorize instances of malware obfuscation that use cryptographic tools into those which evade detection and those which are detectable. We find that schemes that are hard to de-obfuscate necessarily rely on a construct based on environmental keying. We also show that cryptographic notions of obfuscation, e.g., indistinghuishability and virtual black box obfuscation, may not guarantee evasion detection under our model. However, they can be used in conjunction with environmental keying to produce hard to de-obfuscate version of programs.

We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.

北京阿比特科技有限公司