亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Representing a sparse histogram, or more generally a sparse vector, is a fundamental task in differential privacy. An ideal solution would use space close to information-theoretical lower bounds, have an error distribution that depends optimally on the desired privacy level, and allow fast random access to entries in the vector. However, existing approaches have only achieved two of these three goals. In this paper we introduce the Approximate Laplace Projection (ALP) mechanism for approximating k-sparse vectors. This mechanism is shown to simultaneously have information-theoretically optimal space (up to constant factors), fast access to vector entries, and error of the same magnitude as the Laplace-mechanism applied to dense vectors. A key new technique is a unary representation of small integers, which we show to be robust against ``randomized response'' noise. This representation is combined with hashing, in the spirit of Bloom filters, to obtain a space-efficient, differentially private representation. Our theoretical performance bounds are complemented by simulations which show that the constant factors on the main performance parameters are quite small, suggesting practicality of the technique.

相關內容

Federated Learning (FL) is a paradigm for large-scale distributed learning which faces two key challenges: (i) efficient training from highly heterogeneous user data, and (ii) protecting the privacy of participating users. In this work, we propose a novel FL approach (DP-SCAFFOLD) to tackle these two challenges together by incorporating Differential Privacy (DP) constraints into the popular SCAFFOLD algorithm. We focus on the challenging setting where users communicate with a ''honest-but-curious'' server without any trusted intermediary, which requires to ensure privacy not only towards a third-party with access to the final model but also towards the server who observes all user communications. Using advanced results from DP theory, we establish the convergence of our algorithm for convex and non-convex objectives. Our analysis clearly highlights the privacy-utility trade-off under data heterogeneity, and demonstrates the superiority of DP-SCAFFOLD over the state-of-the-art algorithm DP-FedAvg when the number of local updates and the level of heterogeneity grow. Our numerical results confirm our analysis and show that DP-SCAFFOLD provides significant gains in practice.

We propose a general optimization-based framework for computing differentially private M-estimators and a new method for constructing differentially private confidence regions. Firstly, we show that robust statistics can be used in conjunction with noisy gradient descent or noisy Newton methods in order to obtain optimal private estimators with global linear or quadratic convergence, respectively. We establish local and global convergence guarantees, under both local strong convexity and self-concordance, showing that our private estimators converge with high probability to a nearly optimal neighborhood of the non-private M-estimators. Secondly, we tackle the problem of parametric inference by constructing differentially private estimators of the asymptotic variance of our private M-estimators. This naturally leads to approximate pivotal statistics for constructing confidence regions and conducting hypothesis testing. We demonstrate the effectiveness of a bias correction that leads to enhanced small-sample empirical performance in simulations. We illustrate the benefits of our methods in several numerical examples.

There has been a rich development of vector autoregressive (VAR) models for modeling temporally correlated multivariate outcomes. However, the existing VAR literature has largely focused on single subject parametric analysis, with some recent extensions to multi-subject modeling with known subgroups. Motivated by the need for flexible Bayesian methods that can pool information across heterogeneous samples in an unsupervised manner, we develop a novel class of non-parametric Bayesian VAR models based on heterogeneous multi-subject data. In particular, we propose a product of Dirichlet process mixture priors that enables separate clustering at multiple scales, which result in partially overlapping clusters that provide greater flexibility. We develop several variants of the method to cater to varying levels of heterogeneity. We implement an efficient posterior computation scheme and illustrate posterior consistency properties under reasonable assumptions on the true density. Extensive numerical studies show distinct advantages over competing methods in terms of estimating model parameters and identifying the true clustering and sparsity structures. Our analysis of resting state fMRI data from the Human Connectome Project reveals biologically interpretable differences between distinct fluid intelligence groups, and reproducible parameter estimates. In contrast, single-subject VAR analyses followed by permutation testing result in negligible differences, which is biologically implausible.

Pufferfish is a Bayesian privacy framework for designing and analyzing privacy mechanisms. It refines differential privacy, the current gold standard in data privacy, by allowing explicit prior knowledge in privacy analysis. Through these privacy frameworks, a number of privacy mechanisms have been developed in literature. In practice, privacy mechanisms often need be modified or adjusted to specific applications. Their privacy risks have to be re-evaluated for different circumstances. Moreover, computing devices only approximate continuous noises through floating-point computation, which is discrete in nature. Privacy proofs can thus be complicated and prone to errors. Such tedious tasks can be burdensome to average data curators. In this paper, we propose an automatic verification technique for Pufferfish privacy. We use hidden Markov models to specify and analyze discretized Pufferfish privacy mechanisms. We show that the Pufferfish verification problem in hidden Markov models is NP-hard. Using Satisfiability Modulo Theories solvers, we propose an algorithm to analyze privacy requirements. We implement our algorithm in a prototypical tool called FAIER, and present several case studies. Surprisingly, our case studies show that na\"ive discretization of well-established privacy mechanisms often fail, witnessed by counterexamples generated by FAIER. In discretized \emph{Above Threshold}, we show that it results in absolutely no privacy. Finally, we compare our approach with testing based approach on several case studies, and show that our verification technique can be combined with testing based approach for the purpose of (i) efficiently certifying counterexamples and (ii) obtaining a better lower bound for the privacy budget $\epsilon$.

There has been a surge of interest in continual learning and federated learning, both of which are important in deep neural networks in real-world scenarios. Yet little research has been done regarding the scenario where each client learns on a sequence of tasks from a private local data stream. This problem of federated continual learning poses new challenges to continual learning, such as utilizing knowledge from other clients, while preventing interference from irrelevant knowledge. To resolve these issues, we propose a novel federated continual learning framework, Federated Weighted Inter-client Transfer (FedWeIT), which decomposes the network weights into global federated parameters and sparse task-specific parameters, and each client receives selective knowledge from other clients by taking a weighted combination of their task-specific parameters. FedWeIT minimizes interference between incompatible tasks, and also allows positive knowledge transfer across clients during learning. We validate our \emph{FedWeIT}~against existing federated learning and continual learning methods under varying degrees of task similarity across clients, and our model significantly outperforms them with a large reduction in the communication cost.

Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an attempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order trajectory optimization algorithm rooted in the Approximate Dynamic Programming. In this vein, we propose a new variant of DDP that can accept batch optimization for training feedforward networks, while integrating naturally with the recent progress in curvature approximation. The resulting algorithm features layer-wise feedback policies which improve convergence rate and reduce sensitivity to hyper-parameter over existing methods. We show that the algorithm is competitive against state-ofthe-art first and second order methods. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

Deep reinforcement learning (RL) methods generally engage in exploratory behavior through noise injection in the action space. An alternative is to add noise directly to the agent's parameters, which can lead to more consistent exploration and a richer set of behaviors. Methods such as evolutionary strategies use parameter perturbations, but discard all temporal structure in the process and require significantly more samples. Combining parameter noise with traditional RL methods allows to combine the best of both worlds. We demonstrate that both off- and on-policy methods benefit from this approach through experimental comparison of DQN, DDPG, and TRPO on high-dimensional discrete action environments as well as continuous control tasks. Our results show that RL with parameter noise learns more efficiently than traditional RL with action space noise and evolutionary strategies individually.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司