In the present paper, we study the limit sets of the almost periodic functions $f(x)$. It is interesting that the values $r=\inf|f(x)|$ and $R=\sup|f(x)|$ may be expressed in the exact form. We show that the ring $r\leq |z|\leq R$ is the limit set of the almost periodic function $f(x)$ (under some natural conditions on $f$). The exact expression for $r$ coincides with the well known partition problem formula and gives a new analytical method of solving the corresponding partition problem. Several interesting examples are considered. For instance, in the case of the five numbers, the well-known Karmarkar--Karp algorithm gives the value $m=2$ as the solution of the partition problem in our example, and our method gives the correct answer $m=0.$ The figures presented in Appendix illustrate our results.
Makaro is a logic puzzle with an objective to fill numbers into a rectangular grid to satisfy certain conditions. In 2018, Bultel et al. developed a physical zero-knowledge proof (ZKP) protocol for Makaro using a deck of cards, which allows a prover to physically convince a verifier that he/she knows a solution of the puzzle without revealing it. However, their protocol requires several identical copies of some cards, making it impractical as a deck of playing cards found in everyday life typically consists of all different cards. In this paper, we propose a new ZKP protocol for Makaro that can be implemented using a standard deck (a deck consisting of all different cards). Our protocol also uses asymptotically less cards than the protocol of Bultel et al. Most importantly, we develop a general method to encode a number with a sequence of all different cards. This allows us to securely compute several numerical functions using a standard deck, such as verifying that two given numbers are different and verifying that a number is the largest one among the given numbers.
Given multiple point clouds, how to find the rigid transform (rotation, reflection, and shifting) such that these point clouds are well aligned? This problem, known as the generalized orthogonal Procrustes problem (GOPP), has found numerous applications in statistics, computer vision, and imaging science. While one commonly-used method is finding the least squares estimator, it is generally an NP-hard problem to obtain the least squares estimator exactly due to the notorious nonconvexity. In this work, we apply the semidefinite programming (SDP) relaxation and the generalized power method to solve this generalized orthogonal Procrustes problem. In particular, we assume the data are generated from a signal-plus-noise model: each observed point cloud is a noisy copy of the same unknown point cloud transformed by an unknown orthogonal matrix and also corrupted by additive Gaussian noise. We show that the generalized power method (equivalently alternating minimization algorithm) with spectral initialization converges to the unique global optimum to the SDP relaxation, provided that the signal-to-noise ratio is high. Moreover, this limiting point is exactly the least squares estimator and also the maximum likelihood estimator. In addition, we derive a block-wise estimation error for each orthogonal matrix and the underlying point cloud. Our theoretical bound is near-optimal in terms of the information-theoretic limit (only loose by a factor of the dimension and a log factor). Our results significantly improve the state-of-the-art results on the tightness of the SDP relaxation for the generalized orthogonal Procrustes problem, an open problem posed by Bandeira, Khoo, and Singer in 2014.
In logics for the strategic reasoning the main challenge is represented by their verification in contexts of imperfect information and perfect recall. In this work, we show a technique to approximate the verification of Alternating-time Temporal Logic (ATL*) under imperfect information and perfect recall, which is known to be undecidable. Given a model M and a formula $\varphi$, we propose a verification procedure that generates sub-models of M in which each sub-model M' satisfies a sub-formula $\varphi'$ of $\varphi$ and the verification of $\varphi'$ in M' is decidable. Then, we use CTL* model checking to provide a verification result of $\varphi$ on M. We prove that our procedure is in the same class of complexity of ATL* model checking under perfect information and perfect recall, we present a tool that implements our procedure, and provide experimental results.
In this paper, we consider permutation manipulations by any subset of women in the men-proposing version of the Gale-Shapley algorithm. This paper is motivated by the college admissions process in China. Our results also answer an open problem on what can be achieved by permutation manipulations. We present an efficient algorithm to find a strategy profile such that the induced matching is stable and Pareto-optimal (in the set of all achievable stable matchings) while the strategy profile itself is inconspicuous. Surprisingly, we show that such a strategy profile actually forms a Nash equilibrium of the manipulation game. In the end, we show that it is NP-complete to find a manipulation that is strictly better for all members of the coalition. This result demonstrates a sharp contrast between weakly better off outcomes and strictly better-off outcomes.
In this paper, we consider the ``Shortest Superstring Problem''(SSP) or the ``Shortest Common Superstring Problem''(SCS). The problem is as follows. For a positive integer $n$, a sequence of n strings $S=(s^1,\dots,s^n)$ is given. We should construct the shortest string $t$ (we call it superstring) that contains each string from the given sequence as a substring. The problem is connected with the sequence assembly method for reconstructing a long DNA sequence from small fragments. We present a quantum algorithm with running time $O^*(1.728^n)$. Here $O^*$ notation does not consider polynomials of $n$ and the length of $t$.
In a companion study \cite{patterson2020computing2D}, we present a numerical method for simulating 2D viscous flow through an open compliant closed channel, drive by pressure gradient. We consider the highly viscous regime, where fluid dynamics is described by the Stokes equations, and the less viscous regime described by the Navier-Stokes equations. In this study, we extend the method to 3D tubular flow. The problem is formulated in axisymmetric cylindrical coordinates, an approach that is natural for tubular flow simulations and that substantially reduces computational cost. When the elastic tubular walls are stretched or compressed, they exert forces on the fluid. These singular forces introduce unsmoothness into the fluid solution. As in the companion 2D study \cite{patterson2020computing2D}, we extend the immersed interface method to an open tube, and we compute solution to the model equations using the resulting method. Numerical results indicate that this new method preserves sharp jumps in the solution and its derivatives, and converges with second-order accuracy in both space and time.
We consider the interaction between a free flowing fluid and a porous medium flow, where the free flowing fluid is described using the time dependent Stokes equations, and the porous medium flow is described using Darcy's law in the primal formulation. To solve this problem numerically, we use the diffuse interface approach, where the weak form of the coupled problem is written on an extended domain which contains both Stokes and Darcy regions. This is achieved using a phase-field function which equals one in the Stokes region and zero in the Darcy region, and smoothly transitions between these two values on a diffuse region of width $\epsilon$ around the Stokes-Darcy interface. We prove the convergence of the diffuse interface formulation to the standard, sharp interface formulation, and derive the rates of the convergence. This is performed by analyzing the modeling error of the diffuse interface approach at the continuous level, and by deriving the a priori error estimates for the diffuse interface method at the discrete level. The convergence rates are also derived computationally in a numerical example.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.