Automotive softwarization is progressing and future cars are expected to operate a Service-Oriented Architecture on multipurpose compute units, which are interconnected via a high-speed Ethernet backbone. The AUTOSAR architecture foresees a universal middleware called SOME/IP that provides the service primitives, interfaces, and application protocols on top of Ethernet and IP. SOME/IP lacks a robust security architecture, even though security is an essential in future Internet-connected vehicles. In this paper, we augment the SOME/IP service discovery with an authentication and certificate management scheme based on DNSSEC and DANE. We argue that the deployment of well-proven, widely tested standard protocols should serve as an appropriate basis for a robust and reliable security infrastructure in cars. Our solution enables on-demand service authentication in offline scenarios, easy online updates, and remains free of attestation collisions. We evaluate our extension of the common vsomeip stack and find performance values that fully comply with car operations.
In recent years, many semantic segmentation methods have been proposed to predict label of pixels in the scene. In general, we measure area prediction errors or boundary prediction errors for comparing methods. However, there is no intuitive evaluation metric that evaluates both aspects. In this work, we propose a new evaluation measure called weighted Intersection over Union (wIoU) for semantic segmentation. First, it build a weight map generated from a boundary distance map, allowing weighted evaluation for each pixel based on a boundary importance factor. The proposed wIoU can evaluate both contour and region by setting a boundary importance factor. We validated the effectiveness of wIoU on a dataset of 33 scenes and demonstrated its flexibility. Using the proposed metric, we expect more flexible and intuitive evaluation in semantic segmentation filed are possible.
The widespread adoption of Internet of Things (IoT) devices in smart cities, intelligent healthcare systems, and various real-world applications have resulted in the generation of vast amounts of data, often analyzed using different Machine Learning (ML) models. Federated learning (FL) has been acknowledged as a privacy-preserving machine learning technology, where multiple parties cooperatively train ML models without exchanging raw data. However, the current FL architecture does not allow for an audit of the training process due to the various data-protection policies implemented by each FL participant. Furthermore, there is no global model verifiability available in the current architecture. This paper proposes a smart contract-based policy control for securing the Federated Learning (FL) management system. First, we develop and deploy a smart contract-based local training policy control on the FL participants' side. This policy control is used to verify the training process, ensuring that the evaluation process follows the same rules for all FL participants. We then enforce a smart contract-based aggregation policy to manage the global model aggregation process. Upon completion, the aggregated model and policy are stored on blockchain-based storage. Subsequently, we distribute the aggregated global model and the smart contract to all FL participants. Our proposed method uses smart policy control to manage access and verify the integrity of machine learning models. We conducted multiple experiments with various machine learning architectures and datasets to evaluate our proposed framework, such as MNIST and CIFAR-10.
Technological advances in the telecommunications industry have brought significant advantages in the management and performance of communication networks. The railway industry is among the ones that have benefited the most. These interconnected systems, however, have a wide area exposed to cyberattacks. This survey examines the cybersecurity aspects of railway systems by considering the standards, guidelines, frameworks, and technologies used in the industry to assess and mitigate cybersecurity risks, particularly regarding the relationship between safety and security. To do so, we dedicate specific attention to signaling, which fundamental reliance on computer and communication technologies allows us to explore better the multifaceted nature of the security of modern hyperconnected railway systems. With this in mind, we then move on to analyzing the approaches and tools that practitioners can use to facilitate the cyber security process. In detail, we present a view on cyber ranges as an enabling technology to model and emulate computer networks and attack-defense scenarios, study vulnerabilities' impact, and finally devise countermeasures. We also discuss several possible use cases strongly connected to the railway industry reality.
Cross-silo federated learning (FL) enables multiple clients to collaboratively train a machine learning model without sharing training data, but privacy in FL remains a major challenge. Techniques using homomorphic encryption (HE) have been designed to solve this but bring their own challenges. Many techniques using single-key HE (SKHE) require clients to fully trust each other to prevent privacy disclosure between clients. However, fully trusted clients are hard to ensure in practice. Other techniques using multi-key HE (MKHE) aim to protect privacy from untrusted clients but lead to the disclosure of training results in public channels by untrusted third parties, e.g., the public cloud server. Besides, MKHE has higher computation and communication complexity compared with SKHE. We present a new FL protocol ESAFL that leverages a novel efficient and secure additively HE (ESHE) based on the hard problem of ring learning with errors. ESAFL can ensure the security of training data between untrusted clients and protect the training results against untrusted third parties. In addition, theoretical analyses present that ESAFL outperforms current techniques using MKHE in computation and communication, and intensive experiments show that ESAFL achieves approximate 204 times-953 times and 11 times-14 times training speedup while reducing the communication burden by 77 times-109 times and 1.25 times-2 times compared with the state-of-the-art FL models using SKHE.
Diet is central to the epidemic of lifestyle disorders. Accurate and effortless diet logging is one of the significant bottlenecks for effective diet management and calorie restriction. Dish detection from food platters is a challenging problem due to a visually complex food layout. We present an end-to-end computational framework for diet management, from data compilation, annotation, and state-of-the-art model identification to its mobile app implementation. As a case study, we implement the framework in the context of Indian food platters known for their complex presentation that poses a challenge for the automated detection of dishes. Starting with the 61 most popular Indian dishes, we identify the state-of-the-art model through a comparative analysis of deep-learning-based object detection architectures. Rooted in a meticulous compilation of 68,005 platter images with 134,814 manual dish annotations, we first compare ten architectures for multi-label classification to identify ResNet152 (mAP=84.51%) as the best model. YOLOv8x (mAP=87.70%) emerged as the best model architecture for dish detection among the eight deep-learning models implemented after a thorough performance evaluation. By comparing with the state-of-the-art model for the IndianFood10 dataset, we demonstrate the superior object detection performance of YOLOv8x for this subset and establish Resnet152 as the best architecture for multi-label classification. The models thus trained on richly annotated data can be extended to include dishes from across global cuisines. The proposed framework is demonstrated through a proof-of-concept mobile application with diverse applications for diet logging, food recommendation systems, nutritional interventions, and mitigation of lifestyle disorders.
Located in Southern Europe, the Drina River Basin is shared between three countries: Bosnia and Herzegovina, Montenegro, and Serbia. The power sectors of the three countries have a particularly high dependence on coal for power generation. In this paper we analyse different development pathways for achieving climate neutrality in these countries and explore the potential of variable renewable energy in the area, and its role in the decarbonization of the power sector. We investigate the possibility of whether hydro and non-hydro renewables can enable a net zero transition by 2050, and how renewable energy might affect the hydropower cascade shared by the three countries. The Open-Source Energy Modelling System (OSeMOSYS) was used to develop a model representation of the power sector of the countries. The findings of this analysis show that the renewable potential of the countries is a significant 94.4 GW. This potential is 68% to 287% higher than that of previous assessments, depending on the study of comparison. By 2050, 17% of this potential is utilized for VRE capacity additions under an Emission Limit scenario assuming net-zero. These findings suggest that the local VRE potential is sufficient to support the transition to net-zero. Scenarios with higher shares of solar and thermal power show increased power generation from the hydropower cascade, thus reducing the water available for purposes other than power generation.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
The world population is anticipated to increase by close to 2 billion by 2050 causing a rapid escalation of food demand. A recent projection shows that the world is lagging behind accomplishing the "Zero Hunger" goal, in spite of some advancements. Socio-economic and well being fallout will affect the food security. Vulnerable groups of people will suffer malnutrition. To cater to the needs of the increasing population, the agricultural industry needs to be modernized, become smart, and automated. Traditional agriculture can be remade to efficient, sustainable, eco-friendly smart agriculture by adopting existing technologies. In this survey paper the authors present the applications, technological trends, available datasets, networking options, and challenges in smart agriculture. How Agro Cyber Physical Systems are built upon the Internet-of-Agro-Things is discussed through various application fields. Agriculture 4.0 is also discussed as a whole. We focus on the technologies, such as Artificial Intelligence (AI) and Machine Learning (ML) which support the automation, along with the Distributed Ledger Technology (DLT) which provides data integrity and security. After an in-depth study of different architectures, we also present a smart agriculture framework which relies on the location of data processing. We have divided open research problems of smart agriculture as future research work in two groups - from a technological perspective and from a networking perspective. AI, ML, the blockchain as a DLT, and Physical Unclonable Functions (PUF) based hardware security fall under the technology group, whereas any network related attacks, fake data injection and similar threats fall under the network research problem group.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.