亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We describe a practical algorithm for computing normal forms for semigroups and monoids with finite presentations satisfying so-called small overlap conditions. Small overlap conditions are natural conditions on the relations in a presentation, which were introduced by J. H. Remmers and subsequently studied extensively by M. Kambites. Presentations satisfying these conditions are ubiquitous; Kambites showed that a randomly chosen finite presentation satisfies the $C(4)$ condition with probability tending to 1 as the sum of the lengths of relation words tends to infinity. Kambites also showed that several key problems for finitely presented semigroups and monoids are tractable in $C(4)$ monoids: the word problem is solvable in $O(\min\{|u|, |v|\})$ time in the size of the input words $u$ and $v$; the uniform word problem for $\langle A|R\rangle$ is solvable in $O(N ^ 2 \min\{|u|, |v|\})$ where $N$ is the sum of the lengths of the words in $R$; and a normal form for any given word $u$ can be found in $O(|u|)$ time. Although Kambites' algorithm for solving the word problem in $C(4)$ monoids is highly practical, it appears that the coefficients in the linear time algorithm for computing normal forms are too large in practice. In this paper, we present an algorithm for computing normal forms in $C(4)$ monoids that has time complexity $O(|u| ^ 2)$ for input word $u$, but where the coefficients are sufficiently small to allow for practical computation. Additionally, we show that the uniform word problem for small overlap monoids can be solved in $O(N \min\{|u|, |v|\})$ time.

相關內容

The problem Power Dominating Set (PDS) is motivated by the placement of phasor measurement units to monitor electrical networks. It asks for a minimum set of vertices in a graph that observes all remaining vertices by exhaustively applying two observation rules. Our contribution is twofold. First, we determine the parameterized complexity of PDS by proving it is $W[P]$-complete when parameterized with respect to the solution size. We note that it was only known to be $W[2]$-hard before. Our second and main contribution is a new algorithm for PDS that efficiently solves practical instances. Our algorithm consists of two complementary parts. The first is a set of reduction rules for PDS that can also be used in conjunction with previously existing algorithms. The second is an algorithm for solving the remaining kernel based on the implicit hitting set approach. Our evaluation on a set of power grid instances from the literature shows that our solver outperforms previous state-of-the-art solvers for PDS by more than one order of magnitude on average. Furthermore, our algorithm can solve previously unsolved instances of continental scale within a few minutes.

Equivalence testing allows one to conclude that two characteristics are practically equivalent. We propose a framework for fast sample size determination with Bayesian equivalence tests facilitated via posterior probabilities. We assume that data are generated using statistical models with fixed parameters for the purposes of sample size determination. Our framework leverages an interval-based approach, which defines a distribution for the sample size to control the length of posterior highest density intervals (HDIs). We prove the normality of the limiting distribution for the sample size, and we consider the relationship between posterior HDI length and the statistical power of Bayesian equivalence tests. We introduce two novel approaches for estimating the distribution for the sample size, both of which are calibrated to align with targets for statistical power. Both approaches are much faster than traditional power calculations for Bayesian equivalence tests. Moreover, our method requires users to make fewer choices than traditional simulation-based methods for Bayesian sample size determination. It is therefore more accessible to users accustomed to frequentist methods.

Learning to control unknown nonlinear dynamical systems is a fundamental problem in reinforcement learning and control theory. A commonly applied approach is to first explore the environment (exploration), learn an accurate model of it (system identification), and then compute an optimal controller with the minimum cost on this estimated system (policy optimization). While existing work has shown that it is possible to learn a uniformly good model of the system~\citep{mania2020active}, in practice, if we aim to learn a good controller with a low cost on the actual system, certain system parameters may be significantly more critical than others, and we therefore ought to focus our exploration on learning such parameters. In this work, we consider the setting of nonlinear dynamical systems and seek to formally quantify, in such settings, (a) which parameters are most relevant to learning a good controller, and (b) how we can best explore so as to minimize uncertainty in such parameters. Inspired by recent work in linear systems~\citep{wagenmaker2021task}, we show that minimizing the controller loss in nonlinear systems translates to estimating the system parameters in a particular, task-dependent metric. Motivated by this, we develop an algorithm able to efficiently explore the system to reduce uncertainty in this metric, and prove a lower bound showing that our approach learns a controller at a near-instance-optimal rate. Our algorithm relies on a general reduction from policy optimization to optimal experiment design in arbitrary systems, and may be of independent interest. We conclude with experiments demonstrating the effectiveness of our method in realistic nonlinear robotic systems.

The combinatorial pure exploration (CPE) in the stochastic multi-armed bandit setting (MAB) is a well-studied online decision-making problem: A player wants to find the optimal \emph{action} $\boldsymbol{\pi}^*$ from \emph{action class} $\mathcal{A}$, which is a collection of subsets of arms with certain combinatorial structures. Though CPE can represent many combinatorial structures such as paths, matching, and spanning trees, most existing works focus only on binary action class $\mathcal{A}\subseteq\{0, 1\}^d$ for some positive integer $d$. This binary formulation excludes important problems such as the optimal transport, knapsack, and production planning problems. To overcome this limitation, we extend the binary formulation to real, $\mathcal{A}\subseteq\mathbb{R}^d$, and propose a new algorithm. The only assumption we make is that the number of actions in $\mathcal{A}$ is polynomial in $d$. We show an upper bound of the sample complexity for our algorithm and the action class-dependent lower bound for R-CPE-MAB, by introducing a quantity that characterizes the problem's difficulty, which is a generalization of the notion \emph{width} introduced in Chen et al.[2014].

We propose novel statistics which maximise the power of a two-sample test based on the Maximum Mean Discrepancy (MMD), by adapting over the set of kernels used in defining it. For finite sets, this reduces to combining (normalised) MMD values under each of these kernels via a weighted soft maximum. Exponential concentration bounds are proved for our proposed statistics under the null and alternative. We further show how these kernels can be chosen in a data-dependent but permutation-independent way, in a well-calibrated test, avoiding data splitting. This technique applies more broadly to general permutation-based MMD testing, and includes the use of deep kernels with features learnt using unsupervised models such as auto-encoders. We highlight the applicability of our MMD-FUSE test on both synthetic low-dimensional and real-world high-dimensional data, and compare its performance in terms of power against current state-of-the-art kernel tests.

Implicit-explicit Runge-Kutta (IMEX-RK) schemes are popular methods to treat multiscale equations that contain a stiff part and a non-stiff part, where the stiff part is characterized by a small parameter $\varepsilon$. In this work, we prove rigorously the uniform stability and uniform accuracy of a class of IMEX-RK schemes for a linear hyperbolic system with stiff relaxation. The result we obtain is optimal in the sense that it holds regardless of the value of $\varepsilon$ and the order of accuracy is the same as the design order of the original scheme, i.e., there is no order reduction.

We consider the problem of estimating a scalar target parameter in the presence of nuisance parameters. Replacing the unknown nuisance parameter with a nonparametric estimator, e.g.,a machine learning (ML) model, is convenient but has shown to be inefficient due to large biases. Modern methods, such as the targeted minimum loss-based estimation (TMLE) and double machine learning (DML), achieve optimal performance under flexible assumptions by harnessing ML estimates while mitigating the plug-in bias. To avoid a sub-optimal bias-variance trade-off, these methods perform a debiasing step of the plug-in pre-estimate. Existing debiasing methods require the influence function of the target parameter as input. However, deriving the IF requires specialized expertise and thus obstructs the adaptation of these methods by practitioners. We propose a novel way to debias plug-in estimators which (i) is efficient, (ii) does not require the IF to be implemented, (iii) is computationally tractable, and therefore can be readily adapted to new estimation problems and automated without analytic derivations by the user. We build on the TMLE framework and update a plug-in estimate with a regularized likelihood maximization step over a nonparametric model constructed with a reproducing kernel Hilbert space (RKHS), producing an efficient plug-in estimate for any regular target parameter. Our method, thus, offers the efficiency of competing debiasing techniques without sacrificing the utility of the plug-in approach.

In the rank-constrained optimization problem (RCOP), it minimizes a linear objective function over a prespecified closed rank-constrained domain set and $m$ generic two-sided linear matrix inequalities. Motivated by the Dantzig-Wolfe (DW) decomposition, a popular approach of solving many nonconvex optimization problems, we investigate the strength of DW relaxation (DWR) of the RCOP, which admits the same formulation as RCOP except replacing the domain set by its closed convex hull. Notably, our goal is to characterize conditions under which the DWR matches RCOP for any m two-sided linear matrix inequalities. From the primal perspective, we develop the first-known simultaneously necessary and sufficient conditions that achieve: (i) extreme point exactness -- all the extreme points of the DWR feasible set belong to that of the RCOP; (ii) convex hull exactness -- the DWR feasible set is identical to the closed convex hull of RCOP feasible set; and (iii) objective exactness -- the optimal values of the DWR and RCOP coincide. The proposed conditions unify, refine, and extend the existing exactness results in the quadratically constrained quadratic program (QCQP) and fair unsupervised learning. These conditions can be very useful to identify new results, including the extreme point exactness for a QCQP problem that admits an inhomogeneous objective function with two homogeneous two-sided quadratic constraints and the convex hull exactness for fair SVD.

In this work we connect two notions: That of the nonparametric mode of a probability measure, defined by asymptotic small ball probabilities, and that of the Onsager-Machlup functional, a generalized density also defined via asymptotic small ball probabilities. We show that in a separable Hilbert space setting and under mild conditions on the likelihood, modes of a Bayesian posterior distribution based upon a Gaussian prior exist and agree with the minimizers of its Onsager-Machlup functional and thus also with weak posterior modes. We apply this result to inverse problems and derive conditions on the forward mapping under which this variational characterization of posterior modes holds. Our results show rigorously that in the limit case of infinite-dimensional data corrupted by additive Gaussian or Laplacian noise, nonparametric maximum a posteriori estimation is equivalent to Tikhonov-Phillips regularization. In comparison with the work of Dashti, Law, Stuart, and Voss (2013), the assumptions on the likelihood are relaxed so that they cover in particular the important case of white Gaussian process noise. We illustrate our results by applying them to a severely ill-posed linear problem with Laplacian noise, where we express the maximum a posteriori estimator analytically and study its rate of convergence in the small noise limit.

Angluin's L$^*$ algorithm learns the minimal deterministic finite automaton (DFA) of a regular language using membership and equivalence queries. Its probabilistic approximatively correct (PAC) version substitutes an equivalence query by numerous random membership queries to get a high level confidence to the answer. Thus it can be applied to any kind of device and may be viewed as an algorithm for synthesizing an automaton abstracting the behavior of the device based on observations. Here we are interested on how Angluin's PAC learning algorithm behaves for devices which are obtained from a DFA by introducing some noise. More precisely we study whether Angluin's algorithm reduces the noise and produces a DFA closer to the original one than the noisy device. We propose several ways to introduce the noise: (1) the noisy device inverts the classification of words w.r.t. the DFA with a small probability, (2) the noisy device modifies with a small probability the letters of the word before asking its classification w.r.t. the DFA, (3) the noisy device combines the classification of a word w.r.t. the DFA and its classification w.r.t. a counter automaton, and (4) the noisy DFA is obtained by a random process from two DFA such that the language of the first one is included in the second one. Then when a word is accepted (resp. rejected) by the first (resp. second) one, it is also accepted (resp. rejected) and in the remaining cases, it is accepted with probability 0.5. Our main experimental contributions consist in showing that: (1) Angluin's algorithm behaves well whenever the noisy device is produced by a random process, (2) but poorly with a structured noise, and, that (3) is able to eliminate pathological behaviours specified in a regular way. Theoretically, we show that randomness almost surely yields systems with non-recursively enumerable languages.

北京阿比特科技有限公司