亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study damped wave propagation problems phrased as abstract evolution equations in Hilbert spaces. Under some general assumptions, including a natural compatibility condition for initial values, we establish exponential decay estimates for all mild solutions using the language and tools of Hilbert complexes. This framework turns out strong enough to conduct our analysis but also general enough to include a number of interesting examples. Some of these are briefly discussed. By a slight modification of the main arguments, we also obtain corresponding decay results for numerical approximations obtained by compatible discretization strategies.

相關內容

We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.

A functional differential equation related to the logistic equation is studied by a combination of numerical and perturbation methods. Parameter regions are identified where the solution to the nonlinear problem is approximated well by known series solutions of the linear version of the equation. The solution space for a certain class of functions is then mapped out using a continuation approach.

In this paper we investigate the existence, uniqueness and approximation of solutions of delay differential equations (DDEs) with the right-hand side functions $f=f(t,x,z)$ that are Lipschitz continuous with respect to $x$ but only H\"older continuous with respect to $(t,z)$. We give a construction of the randomized two-stage Runge-Kutta scheme for DDEs and investigate its upper error bound in the $L^p(\Omega)$-norm for $p\in [2,+\infty)$. Finally, we report on results of numerical experiments.

We study the existence and uniqueness of Lp-bounded mild solutions for a class ofsemilinear stochastic evolutions equations driven by a real L\'evy processes withoutGaussian component not square integrable for instance the stable process through atruncation method by separating the big and small jumps together with the classicaland simple Banach fixed point theorem ; under local Lipschitz, Holder, linear growthconditions on the coefficients.

In this paper, we formulate and analyse a geometric low-regularity integrator for solving the nonlinear Klein-Gordon equation in the $d$-dimensional space with $d=1,2,3$. The integrator is constructed based on the two-step trigonometric method and thus it has a simple form. Error estimates are rigorously presented to show that the integrator can achieve second-order time accuracy in the energy space under the regularity requirement in $H^{1+\frac{d}{4}}\times H^{\frac{d}{4}}$. Moreover, the time symmetry of the scheme ensures its good long-time energy conservation which is rigorously proved by the technique of modulated Fourier expansions. A numerical test is presented and the numerical results demonstrate the superiorities of the new integrator over some existing methods.

In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders $\alpha_i\in(0,1)$, $i=1,2,\cdots,n$). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only $O(1)$ storage and $O(N_T)$ computational complexity, where $N_T$ denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of $O(\left(\Delta t\right)^{2}+N^{-m})$, where $\Delta t$, $N$, and $m$ represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions.

We study discretizations of fractional fully nonlinear equations by powers of discrete Laplacians. Our problems are parabolic and of order $\sigma\in(0,2)$ since they involve fractional Laplace operators $(-\Delta)^{\sigma/2}$. They arise e.g.~in control and game theory as dynamic programming equations, and solutions are non-smooth in general and should be interpreted as viscosity solutions. Our approximations are realized as finite-difference quadrature approximations and are 2nd order accurate for all values of $\sigma$. The accuracy of previous approximations depend on $\sigma$ and are worse when $\sigma$ is close to $2$. We show that the schemes are monotone, consistent, $L^\infty$-stable, and convergent using a priori estimates, viscosity solutions theory, and the method of half-relaxed limits. We present several numerical examples.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

We present a novel discontinuous Galerkin finite element method for numerical simulations of the rotating thermal shallow water equations in complex geometries using curvilinear meshes, with arbitrary accuracy. We derive an entropy functional which is convex, and which must be preserved in order to preserve model stability at the discrete level. The numerical method is provably entropy stable and conserves mass, buoyancy, vorticity, and energy. This is achieved by using novel entropy stable numerical fluxes, summation-by-parts principle, and splitting the pressure and convection operators so that we can circumvent the use of chain rule at the discrete level. Numerical simulations on a cubed sphere mesh are presented to verify the theoretical results. The numerical experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilisation.

We develop a novel and efficient discontinuous Galerkin spectral element method (DG-SEM) for the spherical rotating shallow water equations in vector invariant form. We prove that the DG-SEM is energy stable, and discretely conserves mass, vorticity, and linear geostrophic balance on general curvlinear meshes. These theoretical results are possible due to our novel entropy stable numerical DG fluxes for the shallow water equations in vector invariant form. We experimentally verify these results on a cubed sphere mesh. Additionally, we show that our method is robust, that is can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence without the need for artificial stabilisation.

北京阿比特科技有限公司