亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the growing complexity of big data workloads that require abundant data and computation, data centers consume a tremendous amount of power daily. In an effort to minimize data center power consumption, several studies developed power models that can be used for job scheduling either reducing the number of active servers or balancing workloads across servers at their peak energy efficiency points. Due to increasing software and hardware heterogeneity, we observed that there is no single power model that works the best for all server conditions. Some complicated machine learning models themselves incur performance and power overheads and hence it is not desirable to use them frequently. There are no power models that consider containerized workload execution. In this paper, we propose a hybrid server power model, Hydra, that considers both prediction accuracy and performance overhead. Hydra dynamically chooses the best power model for the given server conditions. Compared with state-of-the-art solutions, Hydra outperforms across all compute-intensity levels on heterogeneous servers.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 相關系數 · 預測器/決策函數 · 生成模型 · MoDELS ·
2022 年 9 月 16 日

Estimating sample size and statistical power is an essential part of a good study design. This R package allows users to conduct power analysis based on Monte Carlo simulations in settings in which consideration of the correlations between predictors is important. It runs power analyses given a data generative model and an inference model. It can set up a data generative model that preserves dependence structures among variables given existing data (continuous, binary, or ordinal) or high-level descriptions of the associations. Users can generate power curves to assess the trade-offs between sample size, effect size, and power of a design. This paper presents tutorials and examples focusing on applications for environmental mixture studies when predictors tend to be moderately to highly correlated. It easily interfaces with several existing and newly developed analysis strategies for assessing associations between exposures and health outcomes. However, the package is sufficiently general to facilitate power simulations in a wide variety of settings.

Decentralized learning offers privacy and communication efficiency when data are naturally distributed among agents communicating over an underlying graph. Motivated by overparameterized learning settings, in which models are trained to zero training loss, we study algorithmic and generalization properties of decentralized learning with gradient descent on separable data. Specifically, for decentralized gradient descent (DGD) and a variety of loss functions that asymptote to zero at infinity (including exponential and logistic losses), we derive novel finite-time generalization bounds. This complements a long line of recent work that studies the generalization performance and the implicit bias of gradient descent over separable data, but has thus far been limited to centralized learning scenarios. Notably, our generalization bounds match in order their centralized counterparts. Critical behind this, and of independent interest, is establishing novel bounds on the training loss and the rate-of-consensus of DGD for a class of self-bounded losses. Finally, on the algorithmic front, we design improved gradient-based routines for decentralized learning with separable data and empirically demonstrate orders-of-magnitude of speed-up in terms of both training and generalization performance.

Federated learning (FL) is one of the most appealing alternatives to the standard centralized learning paradigm, allowing heterogeneous set of devices to train a machine learning model without sharing their raw data. However, FL requires a central server to coordinate the learning process, thus introducing potential scalability and security issues. In the literature, server-less FL approaches like gossip federated learning (GFL) and blockchain-enabled federated learning (BFL) have been proposed to mitigate these issues. In this work, we propose a complete overview of these three techniques proposing a comparison according to an integral set of performance indicators, including model accuracy, time complexity, communication overhead, convergence time and energy consumption. An extensive simulation campaign permits to draw a quantitative analysis. In particular, GFL is able to save the 18% of training time, the 68% of energy and the 51% of data to be shared with respect to the CFL solution, but it is not able to reach the level of accuracy of CFL. On the other hand, BFL represents a viable solution for implementing decentralized learning with a higher level of security, at the cost of an extra energy usage and data sharing. Finally, we identify open issues on the two decentralized federated learning implementations and provide insights on potential extensions and possible research directions on this new research field.

In recent years, there has been a surge in the adoption of serverless computing due to the ease of deployment, attractive pay-per-use pricing, and transparent horizontal auto-scaling. At the same time, infrastructure advancements such as the emergence of 5G networks and the explosion of devices connected to Internet known as Internet of Things (IoT), as well as new application requirements that constrain where computation and data can happen, will expand the reach of Cloud computing beyond traditional data centers into Hybrid Cloud. Digital transformation due to the pandemic, which accelerated changes to the workforce and spurred further adoption of AI, is expected to accelerate and the emergent Hybrid Cloud market could potentially expand to over trillion dollars. In the Hybrid Cloud environment, driven by the serverless tenants there will be an increased need to focus on enabling productive work for application builders that are using a distributed platform including public clouds, private clouds, and edge systems. In this chapter we investigate how far serverless computing can be extended to become Hybrid Serverless Computing.

NLU systems deployed in the real world are expected to be regularly updated by retraining or finetuning the underlying neural network on new training examples accumulated over time. In our work, we focus on the multilingual setting where we would want to further finetune a multilingual model on new training data for the same NLU task on which the aforementioned model has already been trained for. We show that under certain conditions, naively updating the multilingual model can lead to losses in performance over a subset of languages although the aggregated performance metric shows an improvement. We establish this phenomenon over four tasks belonging to three task families (token-level, sentence-level and seq2seq) and find that the baseline is far from ideal for the setting at hand. We then build upon recent advances in parameter-efficient finetuning to develop novel finetuning pipelines that allow us to jointly minimize catastrophic forgetting while encouraging positive cross-lingual transfer, hence improving the spread of gains over different languages while reducing the losses incurred in this setup.

In this paper, federated learning (FL) over wireless networks is investigated. In each communication round, a subset of devices is selected to participate in the aggregation with limited time and energy. In order to minimize the convergence time, global loss and latency are jointly considered in a Stackelberg game based framework. Specifically, age of information (AoI) based device selection is considered at leader-level as a global loss minimization problem, while sub-channel assignment, computational resource allocation, and power allocation are considered at follower-level as a latency minimization problem. By dividing the follower-level problem into two sub-problems, the best response of the follower is obtained by a monotonic optimization based resource allocation algorithm and a matching based sub-channel assignment algorithm. By deriving the upper bound of convergence rate, the leader-level problem is reformulated, and then a list based device selection algorithm is proposed to achieve Stackelberg equilibrium. Simulation results indicate that the proposed device selection scheme outperforms other schemes in terms of the global loss, and the developed algorithms can significantly decrease the time consumption of computation and communication.

R2BEAT (R "to" Bethel Extended Allocation for Two-stage sampling) is an R package for the allocation of a sample. Besides other software and packages dealing with the allocation problems, its peculiarity lies in facing properly allocation problems for complex sampling designs with multi-domain and multi-purpose aims. This is common in many official and non-official statistical surveys, therefore R2BEAT could become an essential tool for planning a sample survey. The package implements the Tschprow (1923) - Neyman (1934) method for the optimal allocation of units in stratified sampling, extending it to the multivariate (accordingly to Bethel's proposal (1989)), multi-domain and to the complex sampling designs case (Falorsi et al., 1998). The functions implemented in R2BEAT allow the use of different workflows, depending on the available information on one or more interest variables. The package covers all the phases, from the optimization of the sample to the selection of the Primary and Secondary Stage Units. Furthermore, it provides several outputs for evaluating the allocation results.

Model fine-tuning and adaptation have become a common approach for model specialization for downstream tasks or domains. Fine-tuning the entire model or a subset of the parameters using light-weight adaptation has shown considerable success across different specialization tasks. Fine-tuning a model for a large number of domains typically requires starting a new training job for every domain posing scaling limitations. Once these models are trained, deploying them also poses significant scalability challenges for inference for real-time applications. In this paper, building upon prior light-weight adaptation techniques, we propose a modular framework that enables us to substantially improve scalability for model training and inference. We introduce Submodels that can be quickly and dynamically loaded for on-the-fly inference. We also propose multiple approaches for training those Submodels in parallel using an embedding space in the same training job. We test our framework on an extreme use-case which is speech model personalization for atypical speech, requiring a Submodel for each user. We obtain 128x Submodel throughput with a fixed computation budget without a loss of accuracy. We also show that learning a speaker-embedding space can scale further and reduce the amount of personalization training data required per speaker.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司