We develop a linear time algorithm for finding the diameter of an asteroidal triple-free (AT-free) graph. Furthermore, we update the definition of polar pairs and develop new properties of polar pairs for (weak) dominating pair graphs. We prove that the problem of computing a simplicial vertex in a general graph can be accomplished in O(n^2) based on an existing reduction to the problem of finding diameter in an AT-free graph. We improve the best-known run-time complexities of several graph theoretical problems.
The proximal policy optimization (PPO) algorithm stands as one of the most prosperous methods in the field of reinforcement learning (RL). Despite its success, the theoretical understanding of PPO remains deficient. Specifically, it is unclear whether PPO or its optimistic variants can effectively solve linear Markov decision processes (MDPs), which are arguably the simplest models in RL with function approximation. To bridge this gap, we propose an optimistic variant of PPO for episodic adversarial linear MDPs with full-information feedback, and establish a $\tilde{\mathcal{O}}(d^{3/4}H^2K^{3/4})$ regret for it. Here $d$ is the ambient dimension of linear MDPs, $H$ is the length of each episode, and $K$ is the number of episodes. Compared with existing policy-based algorithms, we achieve the state-of-the-art regret bound in both stochastic linear MDPs and adversarial linear MDPs with full information. Additionally, our algorithm design features a novel multi-batched updating mechanism and the theoretical analysis utilizes a new covering number argument of value and policy classes, which might be of independent interest.
The model of {\em population protocols} provides a universal platform to study distributed processes driven by random pairwise interactions of anonymous agents. The {\em time complexity} of population protocols refers to the number of interactions required to reach a final configuration. More recently, the focus is on the {\em parallel time} defined as the time complexity divided by $n,$ where a given protocol is {\em efficient} if it stabilises in parallel time $O(\mbox{poly}\log n)$. Among computational deficiencies of such protocols are depleting fraction of {\em meaningful interactions} closing in on the final stabilisation (suppressing parallel efficiency), computation power of constant-space population protocols limited to semi-linear predicates in Presburger arithmetic (reflecting on time-space trade offs), and indefinite computation (impacting multi-stage protocols). With these deficiencies in mind, we propose a new {\em selective} variant of population protocols by imposing an elementary structure on the state space, together with a conditional probabilistic choice during random interacting pair selection. We show that such protocols are capable of computing functions more complex than semi-linear predicates, i.e., beyond Presburger arithmetic. We provide the first non-trivial study on median computation (in population protocols) in a comparison model where the operational state space of agents is fixed and the transition function decides on the order between (potentially large) hidden keys associated with the interacting agents. We show that computation of the median of $n$ numbers requires $\Omega(n)$ parallel time and the problem can be solved in $O(n\log n)$ parallel time in expectation and whp in standard population protocols. Finally, we show $O(\log^4 n)$ parallel time median computation in selective population protocols.
Although geographically weighted Poisson regression (GWPR) is a popular regression for spatially indexed count data, its development is relatively limited compared to that found for linear geographically weighted regression (GWR), where many extensions (e.g., multiscale GWR, scalable GWR) have been proposed. The weak development of GWPR can be attributed to the computational cost and identification problem in the underpinning Poisson regression model. This study proposes linearized GWPR (L-GWPR) by introducing a log-linear approximation into the GWPR model to overcome these bottlenecks. Because the L-GWPR model is identical to the Gaussian GWR model, it is free from the identification problem, easily implemented, computationally efficient, and offers similar potential for extension. Specifically, L-GWPR does not require a double-loop algorithm, which makes GWPR slow for large samples. Furthermore, we extended L-GWPR by introducing ridge regularization to enhance its stability (regularized L-GWPR). The results of the Monte Carlo experiments confirmed that regularized L-GWPR estimates local coefficients accurately and computationally efficiently. Finally, we compared GWPR and regularized L-GWPR through a crime analysis in Tokyo.
Convolutional codes with a maximum distance profile attain the largest possible column distances for the maximum number of time instants and thus have outstanding error-correcting capability especially for streaming applications. Explicit constructions of such codes are scarce in the literature. In particular, known constructions of convolutional codes with rate k/n and a maximum distance profile require a field of size at least exponential in n for general code parameters. At the same time, the only known lower bound on the field size is the trivial bound that is linear in n. In this paper, we show that a finite field of size $\Omega_L(n^{L-1})$ is necessary for constructing convolutional codes with rate k/n and a maximum distance profile of length L. As a direct consequence, this rules out the possibility of constructing convolutional codes with a maximum distance profile of length L >= 3 over a finite field of size O(n). Additionally, we also present an explicit construction of convolutional code with rate k/n and a maximum profile of length L = 1 over a finite field of size $O(n^{\min\{k,n-k\}})$, achieving a smaller field size than known constructions with the same profile length.
A Low-rank Spectral Optimization Problem (LSOP) minimizes a linear objective subject to multiple two-sided linear matrix inequalities intersected with a low-rank and spectral constrained domain set. Although solving LSOP is, in general, NP-hard, its partial convexification (i.e., replacing the domain set by its convex hull) termed "LSOP-R," is often tractable and yields a high-quality solution. This motivates us to study the strength of LSOP-R. Specifically, we derive rank bounds for any extreme point of the feasible set of LSOP-R and prove their tightness for the domain sets with different matrix spaces. The proposed rank bounds recover two well-known results in the literature from a fresh angle and also allow us to derive sufficient conditions under which the relaxation LSOP-R is equivalent to the original LSOP. To effectively solve LSOP-R, we develop a column generation algorithm with a vector-based convex pricing oracle, coupled with a rank-reduction algorithm, which ensures the output solution satisfies the theoretical rank bound. Finally, we numerically verify the strength of the LSOP-R and the efficacy of the proposed algorithms.
P-time event graphs are discrete event systems suitable for modeling processes in which tasks must be executed in predefined time windows. Their dynamics can be represented by max-plus linear-dual inequalities (LDIs), i.e., systems of linear dynamical inequalities in the primal and dual operations of the max-plus algebra. We define a new class of models called switched LDIs (SLDIs), which allow to switch between different modes of operation, each corresponding to a set of LDIs, according to a sequence of modes called schedule. In this paper, we focus on the analysis of SLDIs when the considered schedule is fixed and either periodic or intermittently periodic. We show that SLDIs can model a wide range of applications including single-robot multi-product processing networks, in which every product has different processing requirements and corresponds to a specific mode of operation. Based on the analysis of SLDIs, we propose algorithms to compute: i. minimum and maximum cycle times for these processes, improving the time complexity of other existing approaches; ii. a complete trajectory of the robot including start-up and shut-down transients.
With the growing popularity of neural rendering, there has been an increasing number of neural implicit multi-view reconstruction methods. While many models have been enhanced in terms of positional encoding, sampling, rendering, and other aspects to improve the reconstruction quality, current methods do not fully leverage the information among neighboring pixels during the reconstruction process. To address this issue, we propose an enhanced model called BundleRecon. In the existing approaches, sampling is performed by a single ray that corresponds to a single pixel. In contrast, our model samples a patch of pixels using a bundle of rays, which incorporates information from neighboring pixels. Furthermore, we design bundle-based constraints to further improve the reconstruction quality. Experimental results demonstrate that BundleRecon is compatible with the existing neural implicit multi-view reconstruction methods and can improve their reconstruction quality.
The $\textit{von Neumann Computer Architecture}$ has a distinction between computation and memory. In contrast, the brain has an integrated architecture where computation and memory are indistinguishable. Motivated by the architecture of the brain, we propose a model of $\textit{associative computation}$ where memory is defined by a set of vectors in $\mathbb{R}^n$ (that we call $\textit{anchors}$), computation is performed by convergence from an input vector to a nearest neighbor anchor, and the output is a label associated with an anchor. Specifically, in this paper, we study the representation of Boolean functions in the associative computation model, where the inputs are binary vectors and the corresponding outputs are the labels ($0$ or $1$) of the nearest neighbor anchors. The information capacity of a Boolean function in this model is associated with two quantities: $\textit{(i)}$ the number of anchors (called $\textit{Nearest Neighbor (NN) Complexity}$) and $\textit{(ii)}$ the maximal number of bits representing entries of anchors (called $\textit{Resolution}$). We study symmetric Boolean functions and present constructions that have optimal NN complexity and resolution.
We propose a concise function representation based on deterministic finite state automata for exact most probable explanation and constrained optimization tasks in graphical models. We then exploit our concise representation within Bucket Elimination (BE). We denote our version of BE as FABE. FABE significantly improves the performance of BE in terms of runtime and memory requirements by minimizing redundancy. Results on most probable explanation and weighted constraint satisfaction benchmarks show that FABE often outperforms the state of the art, leading to significant runtime improvements (up to 5 orders of magnitude in our tests).
In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.