亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have recently gained popularity due to their impressive few-shot performance across various downstream tasks. However, fine-tuning all parameters and storing a unique model for each downstream task or domain becomes impractical because of the massive size of checkpoints (e.g., 350GB in GPT-3). Current literature, such as LoRA, showcases the potential of low-rank modifications to the original weights of an LLM, enabling efficient adaptation and storage for task-specific models. These methods can reduce the number of parameters needed to fine-tune an LLM by several orders of magnitude. Yet, these methods face two primary limitations: 1) the parameter reduction is lower-bounded by the rank one decomposition, and 2) the extent of reduction is heavily influenced by both the model architecture and the chosen rank. For instance, in larger models, even a rank one decomposition might exceed the number of parameters truly needed for adaptation. In this paper, we introduce NOLA, which overcomes the rank one lower bound present in LoRA. It achieves this by re-parameterizing the low-rank matrices in LoRA using linear combinations of randomly generated matrices (basis) and optimizing the linear mixture coefficients only. This approach allows us to decouple the number of trainable parameters from both the choice of rank and the network architecture. We present adaptation results using GPT-2 and ViT in natural language and computer vision tasks. NOLA performs as well as, or better than models with equivalent parameter counts. Furthermore, we demonstrate that we can halve the parameters in larger models compared to LoRA with rank one, without sacrificing performance.

相關內容

Smell gestures play a crucial role in the investigation of past smells in the visual arts yet their automated recognition poses significant challenges. This paper introduces the SniffyArt dataset, consisting of 1941 individuals represented in 441 historical artworks. Each person is annotated with a tightly fitting bounding box, 17 pose keypoints, and a gesture label. By integrating these annotations, the dataset enables the development of hybrid classification approaches for smell gesture recognition. The datasets high-quality human pose estimation keypoints are achieved through the merging of five separate sets of keypoint annotations per person. The paper also presents a baseline analysis, evaluating the performance of representative algorithms for detection, keypoint estimation, and classification tasks, showcasing the potential of combining keypoint estimation with smell gesture classification. The SniffyArt dataset lays a solid foundation for future research and the exploration of multi-task approaches leveraging pose keypoints and person boxes to advance human gesture and olfactory dimension analysis in historical artworks.

Although the estimation of 3D human pose and shape (HPS) is rapidly progressing, current methods still cannot reliably estimate moving humans in global coordinates, which is critical for many applications. This is particularly challenging when the camera is also moving, entangling human and camera motion. To address these issues, we adopt a novel 5D representation (space, time, and identity) that enables end-to-end reasoning about people in scenes. Our method, called TRACE, introduces several novel architectural components. Most importantly, it uses two new "maps" to reason about the 3D trajectory of people over time in camera, and world, coordinates. An additional memory unit enables persistent tracking of people even during long occlusions. TRACE is the first one-stage method to jointly recover and track 3D humans in global coordinates from dynamic cameras. By training it end-to-end, and using full image information, TRACE achieves state-of-the-art performance on tracking and HPS benchmarks. The code and dataset are released for research purposes.

The generative AI revolution has recently expanded to videos. Nevertheless, current state-of-the-art video models are still lagging behind image models in terms of visual quality and user control over the generated content. In this work, we present a framework that harnesses the power of a text-to-image diffusion model for the task of text-driven video editing. Specifically, given a source video and a target text-prompt, our method generates a high-quality video that adheres to the target text, while preserving the spatial layout and motion of the input video. Our method is based on a key observation that consistency in the edited video can be obtained by enforcing consistency in the diffusion feature space. We achieve this by explicitly propagating diffusion features based on inter-frame correspondences, readily available in the model. Thus, our framework does not require any training or fine-tuning, and can work in conjunction with any off-the-shelf text-to-image editing method. We demonstrate state-of-the-art editing results on a variety of real-world videos. Webpage: //diffusion-tokenflow.github.io/

Text-to-Speech (TTS) has recently seen great progress in synthesizing high-quality speech owing to the rapid development of parallel TTS systems, but producing speech with naturalistic prosodic variations, speaking styles and emotional tones remains challenging. Moreover, since duration and speech are generated separately, parallel TTS models still have problems finding the best monotonic alignments that are crucial for naturalistic speech synthesis. Here, we propose StyleTTS, a style-based generative model for parallel TTS that can synthesize diverse speech with natural prosody from a reference speech utterance. With novel Transferable Monotonic Aligner (TMA) and duration-invariant data augmentation schemes, our method significantly outperforms state-of-the-art models on both single and multi-speaker datasets in subjective tests of speech naturalness and speaker similarity. Through self-supervised learning of the speaking styles, our model can synthesize speech with the same prosodic and emotional tone as any given reference speech without the need for explicitly labeling these categories.

Advanced Persistent Threats (APTs) represent the most threatening form of attack nowadays since they can stay undetected for a long time. Adversary emulation is a proactive approach for preparing against these attacks. However, adversary emulation tools lack the anti-detection abilities of APTs. We introduce Laccolith, a hypervisor-based solution for adversary emulation with anti-detection to fill this gap. We also present an experimental study to compare Laccolith with MITRE CALDERA, a state-of-the-art solution for adversary emulation, against five popular anti-virus products. We found that CALDERA cannot evade detection, limiting the realism of emulated attacks, even when combined with a state-of-the-art anti-detection framework. Our experiments show that Laccolith can hide its activities from all the tested anti-virus products, thus making it suitable for realistic emulations.

In-Context Learning (ICL) and Instruction Tuning (IT) are two primary paradigms of adopting Large Language Models (LLMs) to downstream applications. However, they are significantly different. In ICL, a set of demonstrations are provided at inference time but the LLM's parameters are not updated. In IT, a set of demonstrations are used to tune LLM's parameters in training time but no demonstrations are used at inference time. Although a growing body of literature has explored ICL and IT, studies on these topics have largely been conducted in isolation, leading to a disconnect between these two paradigms. In this work, we explore the relationship between ICL and IT by examining how the hidden states of LLMs change in these two paradigms. Through carefully designed experiments conducted with LLaMA-2 (7B and 13B), we find that ICL is implicit IT. In other words, ICL changes an LLM's hidden states as if the demonstrations were used to instructionally tune the model. Furthermore, the convergence between ICL and IT is largely contingent upon several factors related to the provided demonstrations. Overall, this work offers a unique perspective to explore the connection between ICL and IT and sheds light on understanding the behaviors of LLM.

Ransomware has remained one of the most notorious threats in the cybersecurity field. Moving Target Defense (MTD) has been proposed as a novel paradigm for proactive defense. Although various approaches leverage MTD, few of them rely on the operating system and, specifically, the file system, thereby making them dependent on other computing devices. Furthermore, existing ransomware defense techniques merely replicate or detect attacks, without preventing them. Thus, this paper introduces the MTFS overlay file system and the design and implementation of three novel MTD techniques implemented on top of it. One delaying attackers, one trapping recursive directory traversal, and another one hiding file types. The effectiveness of the techniques are shown in two experiments. First, it is shown that the techniques can delay and mitigate ransomware on real IoT devices. Secondly, in a broader scope, the solution was confronted with 14 ransomware samples, highlighting that it can save 97% of the files.

Trusted Execution Environments (TEEs) are deployed in many CPU designs because of the confidentiality and integrity guarantees they provide. ARM TrustZone is a TEE extensively deployed on smart phones, IoT devices, and notebooks. Specifically, TrustZone is used to separate code execution and data into two worlds, normal world and secure world. However, this separation inherently prevents traditional fuzzing approaches which rely upon coverage-guided feedback and existing fuzzing research is, therefore, extremely limited. In this paper, we present a native and generic method to perform efficient and scalable feedback-driven fuzzing on Trusted Applications (TAs) using ARM CoreSight. We propose LightEMU, a novel fuzzing framework that allows us to fuzz TAs by decoupling them from relied TEE. We argue that LightEMU is a promising first-stage approach for rapidly discovering TA vulnerabilities prior to investing effort in whole system TEE evaluation precisely because the majority of publicly disclosed TrustZone bugs reside in the TA code itself. We implement LightEMU and adapt it to Teegris, Trusty, OP-TEE and QSEE and evaluate 8 real-world TAs while triggering 3 unique crashes and achieving x10 time speedup when fuzzing TAs using the state-of-the-art TrustZone fuzzing framework.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司