亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Score-based diffusion models are a class of generative models whose dynamics is described by stochastic differential equations that map noise into data. While recent works have started to lay down a theoretical foundation for these models, an analytical understanding of the role of the diffusion time T is still lacking. Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution; however, a smaller value of T should be preferred for a better approximation of the score-matching objective and higher computational efficiency. Starting from a variational interpretation of diffusion models, in this work we quantify this trade-off, and suggest a new method to improve quality and efficiency of both training and sampling, by adopting smaller diffusion times. Indeed, we show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process. Empirical results support our analysis; for image data, our method is competitive w.r.t. the state-of-the-art, according to standard sample quality metrics and log-likelihood.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · MoDELS · 訓練集 · 核化 ·
2022 年 7 月 26 日

We provide a theoretical framework to study a phenomenon that we call one-shot generalization. This phenomenon refers to the ability of an algorithm to perform transfer learning within a single task, meaning that it correctly classifies a test point that has a single exemplar in the training set. We propose a simple data model and use it to study this phenomenon in two ways. First, we prove a non-asymptotic base-line -- kernel methods based on nearest-neighbor classification cannot perform one-shot generalization, independently of the choice of the kernel and the size of the training set. Second, we empirically show that the most direct neural network architecture for our data model performs one-shot generalization almost perfectly. This stark differential leads us to believe that the one-shot generalization mechanism is partially responsible for the empirical success of neural networks.

This paper is concerned with the inverse problem of scattering of time-harmonic acoustic waves from an inhomogeneous medium in two dimensions. We propose a deep learning-based iterative reconstruction algorithm for recovering the contrast of the inhomogeneous medium from the far-field data. The proposed algorithm is given by repeated applications of the Landweber method, the iteratively regularized Gauss-Newton method (IRGNM) and a deep neural network. The Landweber method is used to generate initial guesses for the exact contrast, and the IRGNM is employed to make further improvements to the estimated contrast. Our deep neural network (called the learned projector in this paper) mainly focuses on learning the a priori information of the shape of the unknown contrast by using a normalization technique in the training process and is trained to act like a projector which is expected to make the estimated contrast obtained by the Landweber method or the IRGNM closer to the exact contrast. It is believed that the application of the normalization technique can release the burden of training the deep neural network and lead to good performance of the proposed algorithm. Furthermore, the learned projector is expected to provide good initial guesses for IRGNM and be helpful for accelerating the proposed algorithm. Extensive numerical experiments show that our inversion algorithm has a satisfactory reconstruction capacity and good generalization ability.

Motivated by the successes of deep learning, we propose a class of neural network-based discrete choice models, called RUMnets, which is inspired by the random utility maximization (RUM) framework. This model formulates the agents' random utility function using the sample average approximation (SAA) method. We show that RUMnets sharply approximate the class of RUM discrete choice models: any model derived from random utility maximization has choice probabilities that can be approximated arbitrarily closely by a RUMnet. Reciprocally, any RUMnet is consistent with the RUM principle. We derive an upper bound on the generalization error of RUMnets fitted on choice data, and gain theoretical insights on their ability to predict choices on new, unseen data depending on critical parameters of the dataset and architecture. By leveraging open-source libraries for neural networks, we find that RUMnets outperform other state-of-the-art choice modeling and machine learning methods by a significant margin on two real-world datasets.

Inverse problems are ubiquitous in nature, arising in almost all areas of science and engineering ranging from geophysics and climate science to astrophysics and biomechanics. One of the central challenges in solving inverse problems is tackling their ill-posed nature. Bayesian inference provides a principled approach for overcoming this by formulating the inverse problem into a statistical framework. However, it is challenging to apply when inferring fields that have discrete representations of large dimensions (the so-called "curse of dimensionality") and/or when prior information is available only in the form of previously acquired solutions. In this work, we present a novel method for efficient and accurate Bayesian inversion using deep generative models. Specifically, we demonstrate how using the approximate distribution learned by a Generative Adversarial Network (GAN) as a prior in a Bayesian update and reformulating the resulting inference problem in the low-dimensional latent space of the GAN, enables the efficient solution of large-scale Bayesian inverse problems. Our statistical framework preserves the underlying physics and is demonstrated to yield accurate results with reliable uncertainty estimates, even in the absence of information about underlying noise model, which is a significant challenge with many existing methods. We demonstrate the effectiveness of proposed method on a variety of inverse problems which include both synthetic as well as experimentally observed data.

We develop a new approach to drifting games, a class of two-person games with many applications to boosting and online learning settings, including Prediction with Expert Advice and the Hedge game. Our approach involves (a) guessing an asymptotically optimal potential by solving an associated partial differential equation (PDE); then (b) justifying the guess, by proving upper and lower bounds on the final-time loss whose difference scales like a negative power of the number of time steps. The proofs of our potential-based upper bounds are elementary, using little more than Taylor expansion. The proofs of our potential-based lower bounds are also rather elementary, combining Taylor expansion with probabilistic or combinatorial arguments. Most previous work on asymptotically optimal strategies has used potentials obtained by solving a discrete dynamic programming principle; the arguments are complicated by their discrete nature. Our approach is facilitated by the fact that the potentials we use are explicit solutions of PDEs; the arguments are based on basic calculus. Not only is our approach more elementary, but we give new potentials and derive corresponding upper and lower bounds that match each other in the asymptotic regime.

In this work, we investigated the application of score-based gradient learning in discriminative and generative classification settings. Score function can be used to characterize data distribution as an alternative to density. It can be efficiently learned via score matching, and used to flexibly generate credible samples to enhance discriminative classification quality, to recover density and to build generative classifiers. We analysed the decision theories involving score-based representations, and performed experiments on simulated and real-world datasets, demonstrating its effectiveness in achieving and improving binary classification performance, and robustness to perturbations, particularly in high dimensions and imbalanced situations.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司