亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many tasks use data housed in relational databases to train boosted regression tree models. In this paper, we give a relational adaptation of the greedy algorithm for training boosted regression trees. For the subproblem of calculating the sum of squared residuals of the dataset, which dominates the runtime of the boosting algorithm, we provide a $(1 + \epsilon)$-approximation using the tensor sketch technique. Employing this approximation within the relational boosted regression trees algorithm leads to learning similar model parameters, but with asymptotically better runtime.

相關內容

In functional data analysis, functional linear regression has attracted significant attention recently. Herein, we consider the case where both the response and covariates are functions. There are two available approaches for addressing such a situation: concurrent and nonconcurrent functional models. In the former, the value of the functional response at a given domain point depends only on the value of the functional regressors evaluated at the same domain point, whereas, in the latter, the functional covariates evaluated at each point of their domain have a non-null effect on the response at any point of its domain. To balance these two extremes, we propose a locally sparse functional regression model in which the functional regression coefficient is allowed (but not forced) to be exactly zero for a subset of its domain. This is achieved using a suitable basis representation of the functional regression coefficient and exploiting an overlapping group-Lasso penalty for its estimation. We introduce efficient computational strategies based on majorization-minimization algorithms and discuss appealing theoretical properties regarding the model support and consistency of the proposed estimator. We further illustrate the empirical performance of the method through simulations and two applications related to human mortality and bidding the energy market.

Estimation of the covariance matrix of asset returns is crucial to portfolio construction. As suggested by economic theories, the correlation structure among assets differs between emerging markets and developed countries. It is therefore imperative to make rigorous statistical inference on correlation matrix equality between the two groups of countries. However, if the traditional vector-valued approach is undertaken, such inference is either infeasible due to limited number of countries comparing to the relatively abundant assets, or invalid due to the violations of temporal independence assumption. This highlights the necessity of treating the observations as matrix-valued rather than vector-valued. With matrix-valued observations, our problem of interest can be formulated as statistical inference on covariance structures under sub-Gaussian distributions, i.e., testing non-correlation and correlation equality, as well as the corresponding support estimations. We develop procedures that are asymptotically optimal under some regularity conditions. Simulation results demonstrate the computational and statistical advantages of our procedures over certain existing state-of-the-art methods for both normal and non-normal distributions. Application of our procedures to stock market data reveals interesting patterns and validates several economic propositions via rigorous statistical testing.

In this paper, we consider the multi-armed bandit problem with high-dimensional features. First, we prove a minimax lower bound, $\mathcal{O}\big((\log d)^{\frac{\alpha+1}{2}}T^{\frac{1-\alpha}{2}}+\log T\big)$, for the cumulative regret, in terms of horizon $T$, dimension $d$ and a margin parameter $\alpha\in[0,1]$, which controls the separation between the optimal and the sub-optimal arms. This new lower bound unifies existing regret bound results that have different dependencies on T due to the use of different values of margin parameter $\alpha$ explicitly implied by their assumptions. Second, we propose a simple and computationally efficient algorithm inspired by the general Upper Confidence Bound (UCB) strategy that achieves a regret upper bound matching the lower bound. The proposed algorithm uses a properly centered $\ell_1$-ball as the confidence set in contrast to the commonly used ellipsoid confidence set. In addition, the algorithm does not require any forced sampling step and is thereby adaptive to the practically unknown margin parameter. Simulations and a real data analysis are conducted to compare the proposed method with existing ones in the literature.

There are various cluster validity measures used for evaluating clustering results. One of the main objective of using these measures is to seek the optimal unknown number of clusters. Some measures work well for clusters with different densities, sizes and shapes. Yet, one of the weakness that those validity measures share is that they sometimes provide only one clear optimal number of clusters. That number is actually unknown and there might be more than one potential sub-optimal options that a user may wish to choose based on different applications. We develop two new cluster validity indices based on a correlation between an actual distance between a pair of data points and a centroid distance of clusters that the two points locate in. Our proposed indices constantly yield several peaks at different numbers of clusters which overcome the weakness previously stated. Furthermore, the introduced correlation can also be used for evaluating the quality of a selected clustering result. Several experiments in different scenarios including the well-known iris data set and a real-world marketing application have been conducted in order to compare the proposed validity indices with several well-known ones.

A recently proposed SLOPE estimator (arXiv:1407.3824) has been shown to adaptively achieve the minimax $\ell_2$ estimation rate under high-dimensional sparse linear regression models (arXiv:1503.08393). Such minimax optimality holds in the regime where the sparsity level $k$, sample size $n$, and dimension $p$ satisfy $k/p \rightarrow 0$, $k\log p/n \rightarrow 0$. In this paper, we characterize the estimation error of SLOPE under the complementary regime where both $k$ and $n$ scale linearly with $p$, and provide new insights into the performance of SLOPE estimators. We first derive a concentration inequality for the finite sample mean square error (MSE) of SLOPE. The quantity that MSE concentrates around takes a complicated and implicit form. With delicate analysis of the quantity, we prove that among all SLOPE estimators, LASSO is optimal for estimating $k$-sparse parameter vectors that do not have tied non-zero components in the low noise scenario. On the other hand, in the large noise scenario, the family of SLOPE estimators are sub-optimal compared with bridge regression such as the Ridge estimator.

Learning vector autoregressive models from multivariate time series is conventionally approached through least squares or maximum likelihood estimation. These methods typically assume a fully connected model which provides no direct insight to the model structure and may lead to highly noisy estimates of the parameters. Because of these limitations, there has been an increasing interest towards methods that produce sparse estimates through penalized regression. However, such methods are computationally intensive and may become prohibitively time-consuming when the number of variables in the model increases. In this paper we adopt an approximate Bayesian approach to the learning problem by combining fractional marginal likelihood and pseudo-likelihood. We propose a novel method, PLVAR, that is both faster and produces more accurate estimates than the state-of-the-art methods based on penalized regression. We prove the consistency of the PLVAR estimator and demonstrate the attractive performance of the method on both simulated and real-world data.

Most conventional Federated Learning (FL) models are using a star network topology where all users aggregate their local models at a single server (e.g., a cloud server). That causes significant overhead in terms of both communications and computing at the server, delaying the training process, especially for large scale FL systems with straggling nodes. This paper proposes a novel edge network architecture that enables decentralizing the model aggregation process at the server, thereby significantly reducing the training delay for the whole FL network. Specifically, we design a highly-effective in-network computation protocol (INC) consisting of a user scheduling mechanism, an in-network aggregation process (INA) which is designed for both primal- and primal-dual methods in distributed machine learning problems, and a network routing algorithm. Under the proposed INA, we then formulate a joint routing and resource optimization problem, aiming to minimize the aggregation latency. The problem is NP-hard, and thus we propose a polynomial time routing algorithm which can achieve near optimal performance with a theoretical bound. Simulation results showed that the proposed INC framework can not only help reduce the FL training latency, up to 5.6 times, but also significantly decrease cloud's traffic and computing overhead. This can enable large-scale FL.

Perturbations targeting the graph structure have proven to be extremely effective in reducing the performance of Graph Neural Networks (GNNs), and traditional defenses such as adversarial training do not seem to be able to improve robustness. This work is motivated by the observation that adversarially injected edges effectively can be viewed as additional samples to a node's neighborhood aggregation function, which results in distorted aggregations accumulating over the layers. Conventional GNN aggregation functions, such as a sum or mean, can be distorted arbitrarily by a single outlier. We propose a robust aggregation function motivated by the field of robust statistics. Our approach exhibits the largest possible breakdown point of 0.5, which means that the bias of the aggregation is bounded as long as the fraction of adversarial edges of a node is less than 50\%. Our novel aggregation function, Soft Medoid, is a fully differentiable generalization of the Medoid and therefore lends itself well for end-to-end deep learning. Equipping a GNN with our aggregation improves the robustness with respect to structure perturbations on Cora ML by a factor of 3 (and 5.5 on Citeseer) and by a factor of 8 for low-degree nodes.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

Generative Adversarial Networks (GAN) have shown great promise in tasks like synthetic image generation, image inpainting, style transfer, and anomaly detection. However, generating discrete data is a challenge. This work presents an adversarial training based correlated discrete data (CDD) generation model. It also details an approach for conditional CDD generation. The results of our approach are presented over two datasets; job-seeking candidates skill set (private dataset) and MNIST (public dataset). From quantitative and qualitative analysis of these results, we show that our model performs better as it leverages inherent correlation in the data, than an existing model that overlooks correlation.

北京阿比特科技有限公司