亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While neural rendering has led to impressive advances in scene reconstruction and novel view synthesis, it relies heavily on accurately pre-computed camera poses. To relax this constraint, multiple efforts have been made to train Neural Radiance Fields (NeRFs) without pre-processed camera poses. However, the implicit representations of NeRFs provide extra challenges to optimize the 3D structure and camera poses at the same time. On the other hand, the recently proposed 3D Gaussian Splatting provides new opportunities given its explicit point cloud representations. This paper leverages both the explicit geometric representation and the continuity of the input video stream to perform novel view synthesis without any SfM preprocessing. We process the input frames in a sequential manner and progressively grow the 3D Gaussians set by taking one input frame at a time, without the need to pre-compute the camera poses. Our method significantly improves over previous approaches in view synthesis and camera pose estimation under large motion changes. Our project page is //oasisyang.github.io/colmap-free-3dgs

相關內容

3D是英文“Three Dimensions”的(de)簡(jian)稱(cheng),中文是指三維、三個維度、三個坐標,即有長、有寬、有高(gao),換句話說,就是立體的(de),是相對于只(zhi)有長和寬的(de)平面(mian)(2D)而言。

In real-world applications, one often encounters ambiguously labeled data, where different annotators assign conflicting class labels. Partial-label learning allows training classifiers in this weakly supervised setting. While state-of-the-art methods already feature good predictive performance, they often suffer from miscalibrated uncertainty estimates. However, having well-calibrated uncertainty estimates is important, especially in safety-critical domains like medicine and autonomous driving. In this article, we propose a novel nearest-neighbor-based partial-label-learning algorithm that leverages Dempster-Shafer theory. Extensive experiments on artificial and real-world datasets show that the proposed method provides a well-calibrated uncertainty estimate and achieves competitive prediction performance. Additionally, we prove that our algorithm is risk-consistent.

In observational studies, identification of causal effects is threatened by the potential for unmeasured confounding. Negative controls have become widely used to evaluate the presence of potential unmeasured confounding thus enhancing credibility of reported causal effect estimates. Going beyond simply testing for residual confounding, proximal causal inference (PCI) was recently developed to debias causal effect estimates subject to confounding by hidden factors, by leveraging a pair of negative control variables, also known as treatment and outcome confounding proxies. While formal statistical inference has been developed for PCI, these methods can be challenging to implement in practice as they involve solving complex integral equations that are typically ill-posed. In this paper, we develop a regression-based PCI approach, employing a two-stage regression via familiar generalized linear models to implement the PCI framework, which completely obviates the need to solve difficult integral equations. In the first stage, one fits a generalized linear model (GLM) for the outcome confounding proxy in terms of the treatment confounding proxy and the primary treatment. In the second stage, one fits a GLM for the primary outcome in terms of the primary treatment, using the predicted value of the first-stage regression model as a regressor which as we establish accounts for any residual confounding for which the proxies are relevant. The proposed approach has merit in that (i) it is applicable to continuous, count, and binary outcomes cases, making it relevant to a wide range of real-world applications, and (ii) it is easy to implement using off-the-shelf software for GLMs. We establish the statistical properties of regression-based PCI and illustrate their performance in both synthetic and real-world empirical applications.

Multi-modal models have shown appealing performance in visual tasks recently, as instruction-guided training has evoked the ability to understand fine-grained visual content. However, current methods cannot be trivially applied to scene text recognition (STR) due to the gap between natural and text images. In this paper, we introduce a novel paradigm that formulates STR as an instruction learning problem, and propose instruction-guided scene text recognition (IGTR) to achieve effective cross-modal learning. IGTR first generates rich and diverse instruction triplets of <condition,question,answer>, serving as guidance for nuanced text image understanding. Then, we devise an architecture with dedicated cross-modal feature fusion module, and multi-task answer head to effectively fuse the required instruction and image features for answering questions. Built upon these designs, IGTR facilitates accurate text recognition by comprehending character attributes. Experiments on English and Chinese benchmarks show that IGTR outperforms existing models by significant margins. Furthermore, by adjusting the instructions, IGTR enables various recognition schemes. These include zero-shot prediction, where the model is trained based on instructions not explicitly targeting character recognition, and the recognition of rarely appearing and morphologically similar characters, which were previous challenges for existing models.

Subsumption resolution is an expensive but highly effective simplifying inference for first-order saturation theorem provers. We present a new SAT-based reasoning technique for subsumption resolution, without requiring radical changes to the underlying saturation algorithm. We implemented our work in the theorem prover Vampire, and show that it is noticeably faster than the state of the art.

While traditional video representations are organized around discrete image frames, event-based video is a new paradigm that forgoes image frames altogether. Rather, pixel samples are temporally asynchronous and independent of one another. Until now, researchers have lacked a cohesive software framework for exploring the representation, compression, and applications of event-based video. I present the AD$\Delta$ER software suite to fill this gap. This framework includes utilities for transcoding framed and multimodal event-based video sources to a common representation, rate control mechanisms, lossy compression, application support, and an interactive GUI for transcoding and playback. In this paper, I describe these various software components and their usage.

Despite advances in generative methods, accurately modeling the distribution of graphs remains a challenging task primarily because of the absence of predefined or inherent unique graph representation. Two main strategies have emerged to tackle this issue: 1) restricting the number of possible representations by sorting the nodes, or 2) using permutation-invariant/equivariant functions, specifically Graph Neural Networks (GNNs). In this paper, we introduce a new framework named Discrete Graph Auto-Encoder (DGAE), which leverages the strengths of both strategies and mitigate their respective limitations. In essence, we propose a strategy in 2 steps. We first use a permutation-equivariant auto-encoder to convert graphs into sets of discrete latent node representations, each node being represented by a sequence of quantized vectors. In the second step, we sort the sets of discrete latent representations and learn their distribution with a specifically designed auto-regressive model based on the Transformer architecture. Through multiple experimental evaluations, we demonstrate the competitive performances of our model in comparison to the existing state-of-the-art across various datasets. Various ablation studies support the interest of our method.

For turbulent problems of industrial scale, computational cost may become prohibitive due to the stability constraints associated with explicit time discretization of the underlying conservation laws. On the other hand, implicit methods allow for larger time-step sizes but require exorbitant computational resources. Implicit-explicit (IMEX) formulations combine both temporal approaches, using an explicit method in nonstiff portions of the domain and implicit in stiff portions. While these methods can be shown to be orders of magnitude faster than typical explicit discretizations, they are still limited by their implicit discretization in terms of cost. Hybridization reduces the scaling of these systems to an effective lower dimension, which allows the system to be solved at significant speedup factors compared to standard implicit methods. This work proposes an IMEX scheme that combines hybridized and standard flux reconstriction (FR) methods to tackle geometry-induced stiffness. By using the so-called transmission conditions, an overall conservative formulation can be obtained after combining both explicit FR and hybridized implicit FR methods. We verify and apply our approach to a series of numerical examples, including a multi-element airfoil at Reynolds number 1.7 million. Results demonstrate speedup factors of four against standard IMEX formulations and at least 15 against standard explicit formulations for the same problem.

The success of artificial intelligence (AI), and deep learning models in particular, has led to their widespread adoption across various industries due to their ability to process huge amounts of data and learn complex patterns. However, due to their lack of explainability, there are significant concerns regarding their use in critical sectors, such as finance and healthcare, where decision-making transparency is of paramount importance. In this paper, we provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance. We categorize the collection of explainable AI methods according to their corresponding characteristics, and we review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important.

Deep learning techniques have led to remarkable breakthroughs in the field of generic object detection and have spawned a lot of scene-understanding tasks in recent years. Scene graph has been the focus of research because of its powerful semantic representation and applications to scene understanding. Scene Graph Generation (SGG) refers to the task of automatically mapping an image into a semantic structural scene graph, which requires the correct labeling of detected objects and their relationships. Although this is a challenging task, the community has proposed a lot of SGG approaches and achieved good results. In this paper, we provide a comprehensive survey of recent achievements in this field brought about by deep learning techniques. We review 138 representative works that cover different input modalities, and systematically summarize existing methods of image-based SGG from the perspective of feature extraction and fusion. We attempt to connect and systematize the existing visual relationship detection methods, to summarize, and interpret the mechanisms and the strategies of SGG in a comprehensive way. Finally, we finish this survey with deep discussions about current existing problems and future research directions. This survey will help readers to develop a better understanding of the current research status and ideas.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

北京阿比特科技有限公司