We introduce a cyclic proof system for the two-way alternation-free modal $\mu$-calculus. The system manipulates one-sided Gentzen sequents and locally deals with the backwards modalities by allowing analytic applications of the cut rule. The global effect of backwards modalities on traces is handled by making the semantics relative to a specific strategy of the opponent in the evaluation game. This allows us to augment sequents by so-called trace atoms, describing traces that the proponent can construct against the opponent's strategy. The idea for trace atoms comes from Vardi's reduction of alternating two-way automata to deterministic one-way automata. Using the multi-focus annotations introduced earlier by Marti and Venema, we turn this trace-based system into a path-based system. We prove that our system is sound for all sequents and complete for sequents not containing trace atoms.
We propose and analyze a structure-preserving space-time variational discretization method for the Cahn-Hilliard-Navier-Stokes system. Uniqueness and stability for the discrete problem is established in the presence of concentration dependent mobility and viscosity parameters by means of the relative energy estimates and order optimal convergence rates are established for all variables using balanced approximation spaces and relaxed regularity conditions on the solution. Numerical tests are presented to demonstrate the proposed method is fully practical and yields the predicted convergence rates. The discrete stability estimates developed in this paper may also be used to analyse other discretization schemes, which is briefly outlined in the discussion.
It is known that different categorial grammars have surface representation in a fragment of first order multiplicative linear logic (MLL1). We show that the fragment of interest is equivalent to the recently introduced extended tensor type calculus (ETTC). ETTC is a calculus of specific typed terms, which represent tuples of strings, more precisely bipartite graphs decorated with strings. Types are derived from linear logic formulas, and rules correspond to concrete operations on these string-labeled graphs, so that they can be conveniently visualized. This provides the above mentioned fragment of MLL1 that is relevant for language modeling not only with some alternative syntax and intuitive geometric representation, but also with an intrinsic deductive system, which has been absent. In this work we consider a non-trivial notationally enriched variation of the previously introduced {\bf ETTC}, which allows more concise and transparent computations. We present both a cut-free sequent calculus and a natural deduction formalism.
We propose a new multistep deep learning-based algorithm for the resolution of moderate to high dimensional nonlinear backward stochastic differential equations (BSDEs) and their corresponding parabolic partial differential equations (PDE). Our algorithm relies on the iterated time discretisation of the BSDE and approximates its solution and gradient using deep neural networks and automatic differentiation at each time step. The approximations are obtained by sequential minimisation of local quadratic loss functions at each time step through stochastic gradient descent. We provide an analysis of approximation error in the case of a network architecture with weight constraints requiring only low regularity conditions on the generator of the BSDE. The algorithm increases accuracy from its single step parent model and has reduced complexity when compared to similar models in the literature.
We study a class of Gaussian processes for which the posterior mean, for a particular choice of data, replicates a truncated Taylor expansion of any order. The data consist of derivative evaluations at the expansion point and the prior covariance kernel belongs to the class of Taylor kernels, which can be written in a certain power series form. We discuss and prove some results on maximum likelihood estimation of parameters of Taylor kernels. The proposed framework is a special case of Gaussian process regression based on data that is orthogonal in the reproducing kernel Hilbert space of the covariance kernel.
We present a Turing complete, volume preserving, smooth flow on the $4$-sphere.
A Milstein-type method is proposed for some highly non-linear non-autonomous time-changed stochastic differential equations (SDEs). The spatial variables in the coefficients of the time-changed SDEs satisfy the super-linear growth condition and the temporal variables obey some H\"older's continuity condition. The strong convergence in the finite time is studied and the convergence order is obtained.
Partite, $3$-uniform hypergraphs are $3$-uniform hypergraphs in which each hyperedge contains exactly one point from each of the $3$ disjoint vertex classes. We consider the degree sequence problem of partite, $3$-uniform hypergraphs, that is, to decide if such a hypergraph with prescribed degree sequences exists. We prove that this decision problem is NP-complete in general, and give a polynomial running time algorithm for third almost-regular degree sequences, that is, when each degree in one of the vertex classes is $k$ or $k-1$ for some fixed $k$, and there is no restriction for the other two vertex classes. We also consider the sampling problem, that is, to uniformly sample partite, $3$-uniform hypergraphs with prescribed degree sequences. We propose a Parallel Tempering method, where the hypothetical energy of the hypergraphs measures the deviation from the prescribed degree sequence. The method has been implemented and tested on synthetic and real data. It can also be applied for $\chi^2$ testing of contingency tables. We have shown that this hypergraph-based $\chi^2$ test is more sensitive than the standard $\chi^2$ test. The extra sensitivity is especially advantageous on small data sets, where the proposed Parallel Tempering method shows promising performance.
Preconditioning is essential in iterative methods for solving linear systems of equations. We study a nonclassic matrix condition number, the $\omega$-condition number, in the context of optimal conditioning for low rank updating of positive definite matrices. For a positive definite matrix, this condition measure is the ratio of the arithmetic and geometric means of the eigenvalues. In particular, we concentrate on linear systems with low rank updates of positive definite matrices which are close to singular. These systems arise in the contexts of nonsmooth Newton methods using generalized Jacobians. We derive an explicit formula for the optimal $\omega$-preconditioned update in this framework. Evaluating or estimating the classical condition number $\kappa$ can be expensive. We show that the $\omega$-condition number can be evaluated exactly following a Cholesky or LU factorization and it estimates the actual condition of a linear system significantly better. Moreover, our empirical results show a significant decrease in the number of iterations required for a requested accuracy in the residual during an iterative method, i.e., these results confirm the efficacy of using the $\omega$-condition number compared to the classical condition number.
We propose a computationally and statistically efficient procedure for segmenting univariate data under piecewise linearity. The proposed moving sum (MOSUM) methodology detects multiple change points where the underlying signal undergoes discontinuous jumps and/or slope changes. Theoretically, it controls the family-wise error rate at a given significance level asymptotically and achieves consistency in multiple change point detection, as well as matching the minimax optimal rate of estimation when the signal is piecewise linear and continuous, all under weak assumptions permitting serial dependence and heavy-tailedness. Computationally, the complexity of the MOSUM procedure is $O(n)$ which, combined with its good performance on simulated datasets, making it highly attractive in comparison with the existing methods. We further demonstrate its good performance on a real data example on rolling element-bearing prognostics.
In many scientific applications the aim is to infer a function which is smooth in some areas, but rough or even discontinuous in other areas of its domain. Such spatially inhomogeneous functions can be modelled in Besov spaces with suitable integrability parameters. In this work we study adaptive Bayesian inference over Besov spaces, in the white noise model from the point of view of rates of contraction, using $p$-exponential priors, which range between Laplace and Gaussian and possess regularity and scaling hyper-parameters. To achieve adaptation, we employ empirical and hierarchical Bayes approaches for tuning these hyper-parameters. Our results show that, while it is known that Gaussian priors can attain the minimax rate only in Besov spaces of spatially homogeneous functions, Laplace priors attain the minimax or nearly the minimax rate in both Besov spaces of spatially homogeneous functions and Besov spaces permitting spatial inhomogeneities.