亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider fully discrete finite element approximations for a semilinear optimal control system of partial differential equations in two cases: for distributed and Robin boundary control. The ecological predator-prey optimal control model is approximated by conforming finite element methods mimicking the spatial part, while a discontinuous Galerkin method is used for the time discretization. We investigate the sensitivity of the solution distance from the target function, in cases with smooth and rough initial data. We employ low, and higher-order polynomials in time and space whenever proper regularity is present. The approximation schemes considered are with and without control constraints, driving efficiently the system to desired states realized using non-linear gradient methods.

相關內容

This manuscript examines the problem of nonlinear stochastic fractional neutral integro-differential equations with weakly singular kernels. Our focus is on obtaining precise estimates to cover all possible cases of Abel-type singular kernels. Initially, we establish the existence, uniqueness, and continuous dependence on the initial value of the true solution, assuming a local Lipschitz condition and linear growth condition. Additionally, we develop the Euler-Maruyama method for the numerical solution of the equation and prove its strong convergence under the same conditions as the well-posedness. Moreover, we determine the accurate convergence rate of this method under global Lipschitz conditions and linear growth conditions.

Consider the problem of predicting the next symbol given a sample path of length n, whose joint distribution belongs to a distribution class that may have long-term memory. The goal is to compete with the conditional predictor that knows the true model. For both hidden Markov models (HMMs) and renewal processes, we determine the optimal prediction risk in Kullback- Leibler divergence up to universal constant factors. Extending existing results in finite-order Markov models [HJW23] and drawing ideas from universal compression, the proposed estimator has a prediction risk bounded by redundancy of the distribution class and a memory term that accounts for the long-range dependency of the model. Notably, for HMMs with bounded state and observation spaces, a polynomial-time estimator based on dynamic programming is shown to achieve the optimal prediction risk {\Theta}(log n/n); prior to this work, the only known result of this type is O(1/log n) obtained using Markov approximation [Sha+18]. Matching minimax lower bounds are obtained by making connections to redundancy and mutual information via a reduction argument.

This paper introduces a second-order method for solving general elliptic partial differential equations (PDEs) on irregular domains using GPU acceleration, based on Ying's kernel-free boundary integral (KFBI) method. The method addresses limitations imposed by CFL conditions in explicit schemes and accuracy issues in fully implicit schemes for the Laplacian operator. To overcome these challenges, the paper employs a series of second-order time discrete schemes and splits the Laplacian operator into explicit and implicit components. Specifically, the Crank-Nicolson method discretizes the heat equation in the temporal dimension, while the implicit scheme is used for the wave equation. The Schrodinger equation is treated using the Strang splitting method. By discretizing the temporal dimension implicitly, the heat, wave, and Schrodinger equations are transformed into a sequence of elliptic equations. The Laplacian operator on the right-hand side of the elliptic equation is obtained from the numerical scheme rather than being discretized and corrected by the five-point difference method. A Cartesian grid-based KFBI method is employed to solve the resulting elliptic equations. GPU acceleration, achieved through a parallel Cartesian grid solver, enhances the computational efficiency by exploiting high degrees of parallelism. Numerical results demonstrate that the proposed method achieves second-order accuracy for the heat, wave, and Schrodinger equations. Furthermore, the GPU-accelerated solvers for the three types of time-dependent equations exhibit a speedup of 30 times compared to CPU-based solvers.

Solving high-dimensional partial differential equations necessitates methods free of exponential scaling in the dimension of the problem. This work introduces a tensor network approach for the Kolmogorov backward equation via approximating directly the Markov operator. We show that the high-dimensional Markov operator can be obtained under a functional hierarchical tensor (FHT) ansatz with a hierarchical sketching algorithm. When the terminal condition admits an FHT ansatz, the proposed operator outputs an FHT ansatz for the PDE solution through an efficient functional tensor network contraction procedure. In addition, the proposed operator-based approach also provides an efficient way to solve the Kolmogorov forward equation when the initial distribution is in an FHT ansatz. We apply the proposed approach successfully to two challenging time-dependent Ginzburg-Landau models with hundreds of variables.

At STOC 2002, Eiter, Gottlob, and Makino presented a technique called ordered generation that yields an $n^{O(d)}$-delay algorithm listing all minimal transversals of an $n$-vertex hypergraph of degeneracy $d$. Recently at IWOCA 2019, Conte, Kant\'e, Marino, and Uno asked whether this XP-delay algorithm parameterized by $d$ could be made FPT-delay for a weaker notion of degeneracy, or even parameterized by the maximum degree $\Delta$, i.e., whether it can be turned into an algorithm with delay $f(\Delta)\cdot n^{O(1)}$ for some computable function $f$. Moreover, and as a first step toward answering that question, they note that they could not achieve these time bounds even for the particular case of minimal dominating sets enumeration. In this paper, using ordered generation, we show that an FPT-delay algorithm can be devised for minimal transversals enumeration parameterized by the degeneracy and dimension, giving a positive and more general answer to the latter question.

A method is created to automatically increase the threshold projection parameter in three-field density-based topology optimization to achieve a near binary design. The parameter increase each iteration is based on an exponential growth function, where the growth rate is dynamically changed during optimization by linking it to the change in objective function. This results in a method that does not need to be tuned for specific problems, or optimizers, and the same set of hyper-parameters can be used for a wide range of problems. The effectiveness of the method is demonstrated on several 2D benchmark problems, including linear buckling and geometrically nonlinear problems.

We detail the mathematical formulation of the line of "functional quantizer" modules developed by the Mathematics and Music Lab (MML) at Michigan Technological University, for the VCV Rack software modular synthesizer platform, which allow synthesizer players to tune oscillators to new musical scales based on mathematical functions. For example, we describe the recently-released MML Logarithmic Quantizer (LOG QNT) module that tunes synthesizer oscillators to the non-Pythagorean musical scale introduced by indie band The Apples in Stereo.

The demagnetization field in micromagnetism is given as the gradient of a potential which solves a partial differential equation (PDE) posed in R^d. In its most general form, this PDE is supplied with continuity condition on the boundary of the magnetic domain and the equation includes a discontinuity in the gradient of the potential over the boundary. Typical numerical algorithms to solve this problem relies on the representation of the potential via the Green's function, where a volume and a boundary integral terms need to be accurately approximated. From a computational point of view, the volume integral dominates the computational cost and can be difficult to approximate due to the singularities of the Green's function. In this article, we propose a hybrid model, where the overall potential can be approximated by solving two uncoupled PDEs posed in bounded domains, whereby the boundary conditions of one of the PDEs is obtained by a low cost boundary integral. Moreover, we provide a convergence analysis of the method under two separate theoretical settings; periodic magnetisation, and high-frequency magnetisation. Numerical examples are given to verify the convergence rates.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

This is a preleminary work. Overdamped Langevin dynamics are reversible stochastic differential equations which are commonly used to sample probability measures in high dimensional spaces, such as the ones appearing in computational statistical physics and Bayesian inference. By varying the diffusion coefficient, there are in fact infinitely many reversible overdamped Langevin dynamics which preserve the target probability measure at hand. This suggests to optimize the diffusion coefficient in order to increase the convergence rate of the dynamics, as measured by the spectral gap of the generator associated with the stochastic differential equation. We analytically study this problem here, obtaining in particular necessary conditions on the optimal diffusion coefficient. We also derive an explicit expression of the optimal diffusion in some homogenized limit. Numerical results, both relying on discretizations of the spectral gap problem and Monte Carlo simulations of the stochastic dynamics, demonstrate the increased quality of the sampling arising from an appropriate choice of the diffusion coefficient.

北京阿比特科技有限公司