This is a preleminary work. Overdamped Langevin dynamics are reversible stochastic differential equations which are commonly used to sample probability measures in high dimensional spaces, such as the ones appearing in computational statistical physics and Bayesian inference. By varying the diffusion coefficient, there are in fact infinitely many reversible overdamped Langevin dynamics which preserve the target probability measure at hand. This suggests to optimize the diffusion coefficient in order to increase the convergence rate of the dynamics, as measured by the spectral gap of the generator associated with the stochastic differential equation. We analytically study this problem here, obtaining in particular necessary conditions on the optimal diffusion coefficient. We also derive an explicit expression of the optimal diffusion in some homogenized limit. Numerical results, both relying on discretizations of the spectral gap problem and Monte Carlo simulations of the stochastic dynamics, demonstrate the increased quality of the sampling arising from an appropriate choice of the diffusion coefficient.
We consider the task of constructing confidence intervals with differential privacy. We propose two private variants of the non-parametric bootstrap, which privately compute the median of the results of multiple "little" bootstraps run on partitions of the data and give asymptotic bounds on the coverage error of the resulting confidence intervals. For a fixed differential privacy parameter $\epsilon$, our methods enjoy the same error rates as that of the non-private bootstrap to within logarithmic factors in the sample size $n$. We empirically validate the performance of our methods for mean estimation, median estimation, and logistic regression with both real and synthetic data. Our methods achieve similar coverage accuracy to existing methods (and non-private baselines) while providing notably shorter ($\gtrsim 10$ times) confidence intervals than previous approaches.
Multivariate Cryptography is one of the main candidates for Post-quantum Cryptography. Multivariate schemes are usually constructed by applying two secret affine invertible transformations $\mathcal S,\mathcal T$ to a set of multivariate polynomials $\mathcal{F}$ (often quadratic). The secret polynomials $\mathcal{F}$ posses a trapdoor that allows the legitimate user to find a solution of the corresponding system, while the public polynomials $\mathcal G=\mathcal S\circ\mathcal F\circ\mathcal T$ look like random polynomials. The polynomials $\mathcal G$ and $\mathcal F$ are said to be affine equivalent. In this article, we present a more general way of constructing a multivariate scheme by considering the CCZ equivalence, which has been introduced and studied in the context of vectorial Boolean functions.
We study three systems of equations, together with a way to count the number of solutions. One of the results was used in the recent computation of D(9), the others have potential to speed up existing techniques in the future.
Successive image generation using cyclic transformations is demonstrated by extending the CycleGAN model to transform images among three different categories. Repeated application of the trained generators produces sequences of images that transition among the different categories. The generated image sequences occupy a more limited region of the image space compared with the original training dataset. Quantitative evaluation using precision and recall metrics indicates that the generated images have high quality but reduced diversity relative to the training dataset. Such successive generation processes are characterized as chaotic dynamics in terms of dynamical system theory. Positive Lyapunov exponents estimated from the generated trajectories confirm the presence of chaotic dynamics, with the Lyapunov dimension of the attractor found to be comparable to the intrinsic dimension of the training data manifold. The results suggest that chaotic dynamics in the image space defined by the deep generative model contribute to the diversity of the generated images, constituting a novel approach for multi-class image generation. This model can be interpreted as an extension of classical associative memory to perform hetero-association among image categories.
Classical Markov Chain Monte Carlo methods have been essential for simulating statistical physical systems and have proven well applicable to other systems with complex degrees of freedom. Motivated by the statistical physics origins, Chen, Kastoryano, and Gily\'en [CKG23] proposed a continuous-time quantum thermodynamic analog to Glauber dynamic that is (i) exactly detailed balanced, (ii) efficiently implementable, and (iii) quasi-local for geometrically local systems. Physically, their construction gives a smooth variant of the Davies' generator derived from weak system-bath interaction. In this work, we give an efficiently implementable discrete-time quantum counterpart to Metropolis sampling that also enjoys the desirable features (i)-(iii). Also, we give an alternative highly coherent quantum generalization of detailed balanced dynamics that resembles another physically derived master equation, and propose a smooth interpolation between this and earlier constructions. We study generic properties of all constructions, including the uniqueness of the fixed-point and the locality of the resulting operators. We hope our results provide a systematic approach to the possible quantum generalizations of classical Glauber and Metropolis dynamics.
The great success of Physics-Informed Neural Networks (PINN) in solving partial differential equations (PDEs) has significantly advanced our simulation and understanding of complex physical systems in science and engineering. However, many PINN-like methods are poorly scalable and are limited to in-sample scenarios. To address these challenges, this work proposes a novel discrete approach termed Physics-Informed Graph Neural Network (PIGNN) to solve forward and inverse nonlinear PDEs. In particular, our approach seamlessly integrates the strength of graph neural networks (GNN), physical equations and finite difference to approximate solutions of physical systems. Our approach is compared with the PINN baseline on three well-known nonlinear PDEs (heat, Burgers and FitzHugh-Nagumo). We demonstrate the excellent performance of the proposed method to work with irregular meshes, longer time steps, arbitrary spatial resolutions, varying initial conditions (ICs) and boundary conditions (BCs) by conducting extensive numerical experiments. Numerical results also illustrate the superiority of our approach in terms of accuracy, time extrapolability, generalizability and scalability. The main advantage of our approach is that models trained in small domains with simple settings have excellent fitting capabilities and can be directly applied to more complex situations in large domains.
We revisit the problem of certifying the correctness of approximate solution paths computed by numerical homotopy continuation methods. We propose a conceptually simple approach based on a parametric variant of the Krawczyk method from interval arithmetic. Unlike most previous methods for certified path-tracking, our approach is applicable in the general setting of parameter homotopies commonly used to solve polynomial systems of equations. We also describe a novel preconditioning strategy and give theoretical correctness and termination results. Experiments using a preliminary implementation of the method indicate that our approach is competitive with specialized methods appearing previously in the literature, in spite of our more general setting.
Sequential algorithms such as sequential importance sampling (SIS) and sequential Monte Carlo (SMC) have proven fundamental in Bayesian inference for models not admitting a readily available likelihood function. For approximate Bayesian computation (ABC), SMC-ABC is the state-of-art sampler. However, since the ABC paradigm is intrinsically wasteful, sequential ABC schemes can benefit from well-targeted proposal samplers that efficiently avoid improbable parameter regions. We contribute to the ABC modeller's toolbox with novel proposal samplers that are conditional to summary statistics of the data. In a sense, the proposed parameters are "guided" to rapidly reach regions of the posterior surface that are compatible with the observed data. This speeds up the convergence of these sequential samplers, thus reducing the computational effort, while preserving the accuracy in the inference. We provide a variety of guided Gaussian and copula-based samplers for both SIS-ABC and SMC-ABC easing inference for challenging case-studies, including multimodal posteriors, highly correlated posteriors, hierarchical models with about 20 parameters, and a simulation study of cell movements using more than 400 summary statistics.
Expander graphs, due to their mixing properties, are useful in many algorithms and combinatorial constructions. One can produce an expander graph with high probability by taking a random graph (e.g., the union of $d$ random bijections for a bipartite graph of degree $d$). This construction is much simpler than all known explicit constructions of expanders and gives graphs with good mixing properties (small second largest eigenvalue) with high probability. However, from the practical viewpoint, it uses too many random bits, so it is difficult to generate and store these bits for large graphs. The natural idea is to restrict the class of the bijections that we use. For example, if both sides are linear spaces $\mathbb{F}_q^k$ over a finite field $\mathbb{F}_q$, we may consider only \emph{linear} bijections, making the number of random bits polynomial in $k$ (and not $q^k$). In this paper we provide some experimental data that shows that this approach conserves the mixing properties (the second eigenvalue) for several types of graphs (undirected regular and biregular bipartite graphs). We also prove some upper bounds for the second eigenvalue (though they are quite weak compared with the experimental results). Finally, we discuss the possibility to decrease the number of random bits further by using Toeplitz matrices; our experiments show that this change makes the mixing properties only marginally worse while the number of random bits decreases significantly.
We give a short proof of almost sure invertibility of unsymmetric random Kansa collocation matrices by a class of analytic RBF vanishing at infinity, for the Poisson equation with Dirichlet boundary conditions. Such a class includes popular Positive Definite instances such as Gaussians, Generalized Inverse MultiQuadrics and Matern RBF. The proof works on general domains in any dimension, with any distribution of boundary collocation points and any continuous random distribution of internal collocation points.