亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Feature grid Scene Representation Networks (SRNs) have been applied to scientific data as compact functional surrogates for analysis and visualization. As SRNs are black-box lossy data representations, assessing the prediction quality is critical for scientific visualization applications to ensure that scientists can trust the information being visualized. Currently, existing architectures do not support inference time reconstruction quality assessment, as coordinate-level errors cannot be evaluated in the absence of ground truth data. We propose a parameter-efficient multi-decoder SRN (MDSRN) ensemble architecture consisting of a shared feature grid with multiple lightweight multi-layer perceptron decoders. MDSRN can generate a set of plausible predictions for a given input coordinate to compute the mean as the prediction of the multi-decoder ensemble and the variance as a confidence score. The coordinate-level variance can be rendered along with the data to inform the reconstruction quality, or be integrated into uncertainty-aware volume visualization algorithms. To prevent the misalignment between the quantified variance and the prediction quality, we propose a novel variance regularization loss for ensemble learning that promotes the Regularized multi-decoder SRN (RMDSRN) to obtain a more reliable variance that correlates closely to the true model error. We comprehensively evaluate the quality of variance quantification and data reconstruction of Monte Carlo Dropout, Mean Field Variational Inference, Deep Ensemble, and Predicting Variance compared to the proposed MDSRN and RMDSRN across diverse scalar field datasets. We demonstrate that RMDSRN attains the most accurate data reconstruction and competitive variance-error correlation among uncertain SRNs under the same neural network parameter budgets.

相關內容

Large language models (LLMs) have achieved remarkable success across diverse tasks, yet their inference processes are hindered by substantial time and energy demands due to single-token generation at each decoding step. While previous methods such as speculative decoding mitigate these inefficiencies by producing multiple tokens per step, each token is still generated by its single-token distribution, thereby enhancing speed without improving effectiveness. In contrast, our work simultaneously enhances inference speed and improves the output effectiveness. We consider multi-token joint decoding (MTJD), which generates multiple tokens from their joint distribution at each iteration, theoretically reducing perplexity and enhancing task performance. However, MTJD suffers from the high cost of sampling from the joint distribution of multiple tokens. Inspired by speculative decoding, we introduce multi-token assisted decoding (MTAD), a novel framework designed to accelerate MTJD. MTAD leverages a smaller auxiliary model to approximate the joint distribution of a larger model, incorporating a verification mechanism that not only ensures the accuracy of this approximation, but also improves the decoding efficiency over conventional speculative decoding. Theoretically, we demonstrate that MTAD closely approximates exact MTJD with bounded error. Empirical evaluations using Llama-2 and OPT models ranging from 13B to 70B parameters across various tasks reveal that MTAD reduces perplexity by 21.2% and improves downstream performance compared to standard single-token sampling. Furthermore, MTAD achieves a 1.42x speed-up and consumes 1.54x less energy than conventional speculative decoding methods. These results highlight MTAD's ability to make multi-token joint decoding both effective and efficient, promoting more sustainable and high-performance deployment of LLMs.

Multi-resolution methods such as Adaptive Mesh Refinement (AMR) can enhance storage efficiency for HPC applications generating vast volumes of data. However, their applicability is limited and cannot be universally deployed across all applications. Furthermore, integrating lossy compression with multi-resolution techniques to further boost storage efficiency encounters significant barriers. To this end, we introduce an innovative workflow that facilitates high-quality multi-resolution data compression for both uniform and AMR simulations. Initially, to extend the usability of multi-resolution techniques, our workflow employs a compression-oriented Region of Interest (ROI) extraction method, transforming uniform data into a multi-resolution format. Subsequently, to bridge the gap between multi-resolution techniques and lossy compressors, we optimize three distinct compressors, ensuring their optimal performance on multi-resolution data. Lastly, we incorporate an advanced uncertainty visualization method into our workflow to understand the potential impacts of lossy compression. Experimental evaluation demonstrates that our workflow achieves significant compression quality improvements.

The Gaussian process (GP) is a popular statistical technique for stochastic function approximation and uncertainty quantification from data. GPs have been adopted into the realm of machine learning in the last two decades because of their superior prediction abilities, especially in data-sparse scenarios, and their inherent ability to provide robust uncertainty estimates. Even so, their performance highly depends on intricate customizations of the core methodology, which often leads to dissatisfaction among practitioners when standard setups and off-the-shelf software tools are being deployed. Arguably the most important building block of a GP is the kernel function which assumes the role of a covariance operator. Stationary kernels of the Mat\'ern class are used in the vast majority of applied studies; poor prediction performance and unrealistic uncertainty quantification are often the consequences. Non-stationary kernels show improved performance but are rarely used due to their more complicated functional form and the associated effort and expertise needed to define and tune them optimally. In this perspective, we want to help ML practitioners make sense of some of the most common forms of non-stationarity for Gaussian processes. We show a variety of kernels in action using representative datasets, carefully study their properties, and compare their performances. Based on our findings, we propose a new kernel that combines some of the identified advantages of existing kernels.

Efficient inference in high-dimensional models is a central challenge in machine learning. We introduce the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, which combines the strengths of the Ensemble Kalman Filter (EnKF) and Gaussian Belief Propagation (GaBP) to address this challenge. GEnBP updates ensembles of prior samples into posterior samples by passing low-rank local messages over the edges of a graphical model, enabling efficient handling of high-dimensional states, parameters, and complex, noisy, black-box generation processes. By utilizing local message passing within a graphical model structure, GEnBP effectively manages complex dependency structures and remains computationally efficient even when the ensemble size is much smaller than the inference dimension - a common scenario in spatiotemporal modeling, image processing, and physical model inversion. We demonstrate that GEnBP can be applied to various problem structures, including data assimilation, system identification, and hierarchical models, and show through experiments that it outperforms existing methods in terms of accuracy and computational efficiency. Supporting code is available at //github.com/danmackinlay/GEnBP

Quantum Relative Entropy (QRE) programming is a recently popular and challenging class of convex optimization problems with significant applications in quantum computing and quantum information theory. We are interested in modern interior point (IP) methods based on optimal self-concordant barriers for the QRE cone. A range of theoretical and numerical challenges associated with such barrier functions and the QRE cones have hindered the scalability of IP methods. To address these challenges, we propose a series of numerical and linear algebraic techniques and heuristics aimed at enhancing the efficiency of gradient and Hessian computations for the self-concordant barrier function, solving linear systems, and performing matrix-vector products. We also introduce and deliberate about some interesting concepts related to QRE such as symmetric quantum relative entropy (SQRE). We also introduce a two-phase method for performing facial reduction that can significantly improve the performance of QRE programming. Our new techniques have been implemented in the latest version (DDS 2.2) of the software package DDS. In addition to handling QRE constraints, DDS accepts any combination of several other conic and non-conic convex constraints. Our comprehensive numerical experiments encompass several parts including 1) a comparison of DDS 2.2 with Hypatia for the nearest correlation matrix problem, 2) using DDS for combining QRE constraints with various other constraint types, and 3) calculating the key rate for quantum key distribution (QKD) channels and presenting results for several QKD protocols.

Current speech-based LLMs are predominantly trained on extensive ASR and TTS datasets, excelling in tasks related to these domains. However, their ability to handle direct speech-to-speech conversations remains notably constrained. These models often rely on an ASR-to-TTS chain-of-thought pipeline, converting speech into text for processing before generating audio responses, which introduces latency and loses audio features. We propose a method that implicitly internalizes ASR chain of thought into a speech LLM, enhancing its native speech understanding capabilities. Our approach reduces latency and improves the model's native understanding of speech, paving the way for more efficient and natural real-time audio interactions. We also release a large-scale synthetic conversational dataset to facilitate further research.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司