Interacting physically with robots and sharing environment with them leads to situations where humans and robots have to cross each other in narrow corridors. In these cases, the robot has to make space for the human to pass. From observation of human-human crossing behaviours, we isolated two main factors in this avoiding behaviour: body rotation and sliding motion. We implemented a robot controller able to vary these factors and explored how this variation impacted on people's perception. Results from a within-participants study involving 23 participants show that people prefer a robot rotating its body when crossing them. Additionally, a sliding motion is rated as being warmer. These results show the importance of social avoidance when interacting with humans.
The practical importance of coherent forecasts in hierarchical forecasting has inspired many studies on forecast reconciliation. Under this approach, so-called base forecasts are produced for every series in the hierarchy and are subsequently adjusted to be coherent in a second reconciliation step. Reconciliation methods have been shown to improve forecast accuracy, but will, in general, adjust the base forecast of every series. However, in an operational context, it is sometimes necessary or beneficial to keep forecasts of some variables unchanged after forecast reconciliation. In this paper, we formulate reconciliation methodology that keeps forecasts of a pre-specified subset of variables unchanged or "immutable". In contrast to existing approaches, these immutable forecasts need not all come from the same level of a hierarchy, and our method can also be applied to grouped hierarchies. We prove that our approach preserves unbiasedness in base forecasts. Our method can also account for correlations between base forecasting errors and ensure non-negativity of forecasts. We also perform empirical experiments, including an application to sales of a large scale online retailer, to assess the impacts of our proposed methodology.
Semantic place annotation can provide individual semantics, which can be of great help in the field of trajectory data mining. Most existing methods rely on annotated or external data and require retraining following a change of region, thus preventing their large-scale applications. Herein, we propose an unsupervised method denoted as UPAPP for the semantic place annotation of trajectories using spatiotemporal information. The Bayesian Criterion is specifically employed to decompose the spatiotemporal probability of the candidate place into spatial probability, duration probability, and visiting time probability. Spatial information in ROI and POI data is subsequently adopted to calculate the spatial probability. In terms of the temporal probabilities, the Term Frequency Inverse Document Frequency weighting algorithm is used to count the potential visits to different place types in the trajectories, and generates the prior probabilities of the visiting time and duration. The spatiotemporal probability of the candidate place is then combined with the importance of the place category to annotate the visited places. Validation with a trajectory dataset collected by 709 volunteers in Beijing showed that our method achieved an overall and average accuracy of 0.712 and 0.720, respectively, indicating that the visited places can be annotated accurately without any external data.
Unconscious behaviors are one of the indicators of the human perception process from a psychological perspective. As a result of perception responses, hand gestures show behavioral responses from given stimuli. Mouse usages in Human-Computer Interaction (HCI) show hand gestures that individuals perceive information processing. This paper presents an investigation of the correlation between unconscious mouse actions and human cognitive workload. We extracted mouse behaviors from a Robot Operating System (ROS) file-based dataset that user responses are reproducible. We analyzed redundant mouse movements to complete a dual $n$-back game by solely pressing the left and right buttons. Starting from a hypothesis that unconscious mouse behaviors predict different levels of cognitive loads, we statistically analyzed mouse movements. We also validated mouse behaviors with other modalities in the dataset, including self-questionnaire and eye blinking results. As a result, we found that mouse behaviors that occur unconsciously and human cognitive workload correlate.
Embodied AI is a recent research area that aims at creating intelligent agents that can move and operate inside an environment. Existing approaches in this field demand the agents to act in completely new and unexplored scenes. However, this setting is far from realistic use cases that instead require executing multiple tasks in the same environment. Even if the environment changes over time, the agent could still count on its global knowledge about the scene while trying to adapt its internal representation to the current state of the environment. To make a step towards this setting, we propose Spot the Difference: a novel task for Embodied AI where the agent has access to an outdated map of the environment and needs to recover the correct layout in a fixed time budget. To this end, we collect a new dataset of occupancy maps starting from existing datasets of 3D spaces and generating a number of possible layouts for a single environment. This dataset can be employed in the popular Habitat simulator and is fully compliant with existing methods that employ reconstructed occupancy maps during navigation. Furthermore, we propose an exploration policy that can take advantage of previous knowledge of the environment and identify changes in the scene faster and more effectively than existing agents. Experimental results show that the proposed architecture outperforms existing state-of-the-art models for exploration on this new setting.
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets, which unrealistically assume that each image should contain at least one clear and uncluttered salient object. This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets. However, these models are still far from satisfactory when applied to real-world scenes. Based on our analyses, we propose a new high-quality dataset and update the previous saliency benchmark. Specifically, our dataset, called Salient Objects in Clutter~\textbf{(SOC)}, includes images with both salient and non-salient objects from several common object categories. In addition to object category annotations, each salient image is accompanied by attributes that reflect common challenges in common scenes, which can help provide deeper insight into the SOD problem. Further, with a given saliency encoder, e.g., the backbone network, existing saliency models are designed to achieve mapping from the training image set to the training ground-truth set. We, therefore, argue that improving the dataset can yield higher performance gains than focusing only on the decoder design. With this in mind, we investigate several dataset-enhancement strategies, including label smoothing to implicitly emphasize salient boundaries, random image augmentation to adapt saliency models to various scenarios, and self-supervised learning as a regularization strategy to learn from small datasets. Our extensive results demonstrate the effectiveness of these tricks. We also provide a comprehensive benchmark for SOD, which can be found in our repository: //github.com/DengPingFan/SODBenchmark.
When subjected to a sudden, unanticipated threat, human groups characteristically self-organize to identify the threat, determine potential responses, and act to reduce its impact. Central to this process is the challenge of coordinating information sharing and response activity within a disrupted environment. In this paper, we consider coordination in the context of responses to the 2001 World Trade Center disaster. Using records of communications among 17 organizational units, we examine the mechanisms driving communication dynamics, with an emphasis on the emergence of coordinating roles. We employ relational event models (REMs) to identify the mechanisms shaping communications in each unit, finding a consistent pattern of behavior across units with very different characteristics. Using a simulation-based "knock-out" study, we also probe the importance of different mechanisms for hub formation. Our results suggest that, while preferential attachment and pre-disaster role structure generally contribute to the emergence of hub structure, temporally local conversational norms play a much larger role. We discuss broader implications for the role of microdynamics in driving macroscopic outcomes, and for the emergence of coordination in other settings.
As technology advances, the need for safe, efficient, and collaborative human-robot-teams has become increasingly important. One of the most fundamental collaborative tasks in any setting is the object handover. Human-to-robot handovers can take either of two approaches: (1) direct hand-to-hand or (2) indirect hand-to-placement-to-pick-up. The latter approach ensures minimal contact between the human and robot but can also result in increased idle time due to having to wait for the object to first be placed down on a surface. To minimize such idle time, the robot must preemptively predict the human intent of where the object will be placed. Furthermore, for the robot to preemptively act in any sort of productive manner, predictions and motion planning must occur in real-time. We introduce a novel prediction-planning pipeline that allows the robot to preemptively move towards the human agent's intended placement location using gaze and gestures as model inputs. In this paper, we investigate the performance and drawbacks of our early intent predictor-planner as well as the practical benefits of using such a pipeline through a human-robot case study.
Although text style transfer has witnessed rapid development in recent years, there is as yet no established standard for evaluation, which is performed using several automatic metrics, lacking the possibility of always resorting to human judgement. We focus on the task of formality transfer, and on the three aspects that are usually evaluated: style strength, content preservation, and fluency. To cast light on how such aspects are assessed by common and new metrics, we run a human-based evaluation and perform a rich correlation analysis. We are then able to offer some recommendations on the use of such metrics in formality transfer, also with an eye to their generalisability (or not) to related tasks.
Consider the problem of training robustly capable agents. One approach is to generate a diverse collection of agent polices. Training can then be viewed as a quality diversity (QD) optimization problem, where we search for a collection of performant policies that are diverse with respect to quantified behavior. Recent work shows that differentiable quality diversity (DQD) algorithms greatly accelerate QD optimization when exact gradients are available. However, agent policies typically assume that the environment is not differentiable. To apply DQD algorithms to training agent policies, we must approximate gradients for performance and behavior. We propose two variants of the current state-of-the-art DQD algorithm that compute gradients via approximation methods common in reinforcement learning (RL). We evaluate our approach on four simulated locomotion tasks. One variant achieves results comparable to the current state-of-the-art in combining QD and RL, while the other performs comparably in two locomotion tasks. These results provide insight into the limitations of current DQD algorithms in domains where gradients must be approximated. Source code is available at //github.com/icaros-usc/dqd-rl
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.