亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Domain-specific heuristics are a crucial technique for the efficient solving of problems that are large or computationally hard. Answer Set Programming (ASP) systems support declarative specifications of domain-specific heuristics to improve solving performance. However, such heuristics must be invented manually so far. Inventing domain-specific heuristics for answer-set programs requires expertise with the domain under consideration and familiarity with ASP syntax, semantics, and solving technology. The process of inventing useful heuristics would highly profit from automatic support. This paper presents a novel approach to the automatic learning of such heuristics. We use Inductive Logic Programming (ILP) to learn declarative domain-specific heuristics from examples stemming from (near-)optimal answer sets of small but representative problem instances. Our experimental results indicate that the learned heuristics can improve solving performance and solution quality when solving larger, harder instances of the same problem.

相關內容

 ASP是Active Server Page的縮寫,意為“動態服務器頁面”。ASP是微軟公司開發的代替CGI腳本程序的一種應用,它可以與數據庫和其它程序進行交互,是一種簡單、方便的編程工具。

Recently, machine learning of the branch and bound algorithm has shown promise in approximating competent solutions to NP-hard problems. In this paper, we utilize and comprehensively compare the outcomes of three neural networks--graph convolutional neural network (GCNN), GraphSAGE, and graph attention network (GAT)--to solve the capacitated vehicle routing problem. We train these neural networks to emulate the decision-making process of the computationally expensive Strong Branching strategy. The neural networks are trained on six instances with distinct topologies from the CVRPLIB and evaluated on eight additional instances. Moreover, we reduced the minimum number of vehicles required to solve a CVRP instance to a bin-packing problem, which was addressed in a similar manner. Through rigorous experimentation, we found that this approach can match or improve upon the performance of the branch and bound algorithm with the Strong Branching strategy while requiring significantly less computational time. The source code that corresponds to our research findings and methodology is readily accessible and available for reference at the following web address: //isotlaboratory.github.io/ml4vrp

Handwritten document analysis is an area of forensic science, with the goal of establishing authorship of documents through examination of inherent characteristics. Law enforcement agencies use standard protocols based on manual processing of handwritten documents. This method is time-consuming, is often subjective in its evaluation, and is not replicable. To overcome these limitations, in this paper we present a framework capable of extracting and analyzing intrinsic measures of manuscript documents related to text line heights, space between words, and character sizes using image processing and deep learning techniques. The final feature vector for each document involved consists of the mean and standard deviation for every type of measure collected. By quantifying the Euclidean distance between the feature vectors of the documents to be compared, authorship can be discerned. We also proposed a new and challenging dataset consisting of 362 handwritten manuscripts written on paper and digital devices by 124 different people. Our study pioneered the comparison between traditionally handwritten documents and those produced with digital tools (e.g., tablets). Experimental results demonstrate the ability of our method to objectively determine authorship in different writing media, outperforming the state of the art.

Traditional methods for learning with the presence of noisy labels have successfully handled datasets with artificially injected noise but still fall short of adequately handling real-world noise. With the increasing use of meta-learning in the diverse fields of machine learning, researchers leveraged auxiliary small clean datasets to meta-correct the training labels. Nonetheless, existing meta-label correction approaches are not fully exploiting their potential. In this study, we propose an Enhanced Meta Label Correction approach abbreviated as EMLC for the learning with noisy labels (LNL) problem. We re-examine the meta-learning process and introduce faster and more accurate meta-gradient derivations. We propose a novel teacher architecture tailored explicitly to the LNL problem, equipped with novel training objectives. EMLC outperforms prior approaches and achieves state-of-the-art results in all standard benchmarks. Notably, EMLC enhances the previous art on the noisy real-world dataset Clothing1M by $1.52\%$ while requiring $\times 0.5$ the time per epoch and with much faster convergence of the meta-objective when compared to the baseline approach.

Stochastic collocation (SC) is a well-known non-intrusive method of constructing surrogate models for uncertainty quantification. In dynamical systems, SC is especially suited for full-field uncertainty propagation that characterizes the distributions of the high-dimensional primary solution fields of a model with stochastic input parameters. However, due to the highly nonlinear nature of the parameter-to-solution map in even the simplest dynamical systems, the constructed SC surrogates are often inaccurate. This work presents an alternative approach, where we apply the SC approximation over the dynamics of the model, rather than the solution. By combining the data-driven sparse identification of nonlinear dynamics (SINDy) framework with SC, we construct dynamics surrogates and integrate them through time to construct the surrogate solutions. We demonstrate that the SC-over-dynamics framework leads to smaller errors, both in terms of the approximated system trajectories as well as the model state distributions, when compared against full-field SC applied to the solutions directly. We present numerical evidence of this improvement using three test problems: a chaotic ordinary differential equation, and two partial differential equations from solid mechanics.

We consider a simple setting in neuroevolution where an evolutionary algorithm optimizes the weights and activation functions of a simple artificial neural network. We then define simple example functions to be learned by the network and conduct rigorous runtime analyses for networks with a single neuron and for a more advanced structure with several neurons and two layers. Our results show that the proposed algorithm is generally efficient on two example problems designed for one neuron and efficient with at least constant probability on the example problem for a two-layer network. In particular, the so-called harmonic mutation operator choosing steps of size $j$ with probability proportional to $1/j$ turns out as a good choice for the underlying search space. However, for the case of one neuron, we also identify situations with hard-to-overcome local optima. Experimental investigations of our neuroevolutionary algorithm and a state-of-the-art CMA-ES support the theoretical findings.

Case-based reasoning (CBR) as a methodology for problem-solving can use any appropriate computational technique. This position paper argues that CBR researchers have somewhat overlooked recent developments in deep learning and large language models (LLMs). The underlying technical developments that have enabled the recent breakthroughs in AI have strong synergies with CBR and could be used to provide a persistent memory for LLMs to make progress towards Artificial General Intelligence.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司