This paper presents a technique to train a robot to perform kick-motion in AI soccer by using reinforcement learning (RL). In RL, an agent interacts with an environment and learns to choose an action in a state at each step. When training RL algorithms, a problem called the curse of dimensionality (COD) can occur if the dimension of the state is high and the number of training data is low. The COD often causes degraded performance of RL models. In the situation of the robot kicking the ball, as the ball approaches the robot, the robot chooses the action based on the information obtained from the soccer field. In order not to suffer COD, the training data, which are experiences in the case of RL, should be collected evenly from all areas of the soccer field over (theoretically infinite) time. In this paper, we attempt to use the relative coordinate system (RCS) as the state for training kick-motion of robot agent, instead of using the absolute coordinate system (ACS). Using the RCS eliminates the necessity for the agent to know all the (state) information of entire soccer field and reduces the dimension of the state that the agent needs to know to perform kick-motion, and consequently alleviates COD. The training based on the RCS is performed with the widely used Deep Q-network (DQN) and tested in the AI Soccer environment implemented with Webots simulation software.
In this note, we prove that the following function space with absolutely convergent Fourier series \[ F_d:=\left\{ f\in L^2([0,1)^d)\:\middle| \: \|f\|:=\sum_{\boldsymbol{k}\in \mathbb{Z}^d}|\hat{f}(\boldsymbol{k})| \max\left(1,\min_{j\in \mathrm{supp}(\boldsymbol{k})}\log |k_j|\right) <\infty \right\}\] with $\hat{f}(\boldsymbol{k})$ being the $\boldsymbol{k}$-th Fourier coefficient of $f$ and $\mathrm{supp}(\boldsymbol{k}):=\{j\in \{1,\ldots,d\}\mid k_j\neq 0\}$ is polynomially tractable for multivariate integration in the worst-case setting. Here polynomial tractability means that the minimum number of function evaluations required to make the worst-case error less than or equal to a tolerance $\varepsilon$ grows only polynomially with respect to $\varepsilon^{-1}$ and $d$. It is important to remark that the function space $F_d$ is unweighted, that is, all variables contribute equally to the norm of functions. Our tractability result is in contrast to those for most of the unweighted integration problems studied in the literature, in which polynomial tractability does not hold and the problem suffers from the curse of dimensionality. Our proof is constructive in the sense that we provide an explicit quasi-Monte Carlo rule that attains a desired worst-case error bound.
This paper investigates the use of prior computation to estimate the value function to improve sample efficiency in on-policy policy gradient methods in reinforcement learning. Our approach is to estimate the value function from prior computations, such as from the Q-network learned in DQN or the value function trained for different but related environments. In particular, we learn a new value function for the target task while combining it with a value estimate from the prior computation. Finally, the resulting value function is used as a baseline in the policy gradient method. This use of a baseline has the theoretical property of reducing variance in gradient computation and thus improving sample efficiency. The experiments show the successful use of prior value estimates in various settings and improved sample efficiency in several tasks.
The use of data-driven decision support by public agencies is becoming more widespread and already influences the allocation of public resources. This raises ethical concerns, as it has adversely affected minorities and historically discriminated groups. In this paper, we use an approach that combines statistics and data-driven approaches with dynamical modeling to assess long-term fairness effects of labor market interventions. Specifically, we develop and use a model to investigate the impact of decisions caused by a public employment authority that selectively supports job-seekers through targeted help. The selection of who receives what help is based on a data-driven intervention model that estimates an individual's chances of finding a job in a timely manner and rests upon data that describes a population in which skills relevant to the labor market are unevenly distributed between two groups (e.g., males and females). The intervention model has incomplete access to the individual's actual skills and can augment this with knowledge of the individual's group affiliation, thus using a protected attribute to increase predictive accuracy. We assess this intervention model's dynamics -- especially fairness-related issues and trade-offs between different fairness goals -- over time and compare it to an intervention model that does not use group affiliation as a predictive feature. We conclude that in order to quantify the trade-off correctly and to assess the long-term fairness effects of such a system in the real-world, careful modeling of the surrounding labor market is indispensable.
The current spread of social and assistive robotics applications is increasingly highlighting the need for robots that can be easily taught and interacted with, even by users with no technical background. Still, it is often difficult to grasp what such robots know or to assess if a correct representation of the task is being formed. Augmented Reality (AR) has the potential to bridge this gap. We demonstrate three use cases where AR design elements enhance the explainability and efficiency of human-robot interaction: 1) a human teaching a robot some simple kitchen tasks by demonstration, 2) the robot showing its plan for solving novel tasks in AR to a human for validation, and 3) a robot communicating its intentions via AR while assisting people with limited mobility during daily activities.
Traditional deep learning algorithms often fail to generalize when they are tested outside of the domain of the training data. The issue can be mitigated by using unlabeled data from the target domain at training time, but because data distributions can change dynamically in real-life applications once a learned model is deployed, it is critical to create networks robust to unknown and unforeseen domain shifts. In this paper we focus on one of the reasons behind the inability of neural networks to be so: deep networks focus only on the most obvious, potentially spurious, clues to make their predictions and are blind to useful but slightly less efficient or more complex patterns. This behaviour has been identified and several methods partially addressed the issue. To investigate their effectiveness and limits, we first design a publicly available MNIST-based benchmark to precisely measure the ability of an algorithm to find the ''hidden'' patterns. Then, we evaluate state-of-the-art algorithms through our benchmark and show that the issue is largely unsolved. Finally, we propose a partially reversed contrastive loss to encourage intra-class diversity and find less strongly correlated patterns, whose efficiency is demonstrated by our experiments.
Aggregate measures of family planning are used to monitor demand for and usage of contraceptive methods in populations globally, for example as part of the FP2030 initiative. Family planning measures for low- and middle-income countries are typically based on data collected through cross-sectional household surveys. Recently proposed measures account for sexual activity through assessment of the distribution of time-between-sex (TBS) in the population of interest. In this paper, we propose a statistical approach to estimate the distribution of TBS using data typically available in low- and middle-income countries, while addressing two major challenges. The first challenge is that timing of sex information is typically limited to women's time-since-last-sex (TSLS) data collected in the cross-sectional survey. In our proposed approach, we adopt the current duration method to estimate the distribution of TBS using the available TSLS data, from which the frequency of sex at the population level can be derived. Furthermore, the observed TSLS data are subject to reporting issues because they can be reported in different units and may be rounded off. To apply the current duration approach and account for these data reporting issues, we develop a flexible Bayesian model, and provide a detailed technical description of the proposed modeling approach.
Generalized approximate message passing (GAMP) is a computationally efficient algorithm for estimating an unknown signal \(w_0\in\mathbb{R}^N\) from a random linear measurement \(y= Xw_0 + \epsilon\in\mathbb{R}^M\), where \(X\in\mathbb{R}^{M\times N}\) is a known measurement matrix and \(\epsilon\) is the noise vector. The salient feature of GAMP is that it can provide an unbiased estimator \(\hat{r}^{\rm G}\sim\mathcal{N}(w_0, \hat{s}^2I_N)\), which can be used for various hypothesis-testing methods. In this study, we consider the bootstrap average of an unbiased estimator of GAMP for the elastic net. By numerically analyzing the state evolution of \emph{approximate message passing with resampling}, which has been proposed for computing bootstrap statistics of the elastic net estimator, we investigate when the bootstrap averaging reduces the variance of the unbiased estimator and the effect of optimizing the size of each bootstrap sample and hyperparameter of the elastic net regularization in the asymptotic setting \(M, N\to\infty, M/N\to\alpha\in(0,\infty)\). The results indicate that bootstrap averaging effectively reduces the variance of the unbiased estimator when the actual data generation process is inconsistent with the sparsity assumption of the regularization and the sample size is small. Furthermore, we find that when \(w_0\) is less sparse, and the data size is small, the system undergoes a phase transition. The phase transition indicates the existence of the region where the ensemble average of unbiased estimators of GAMP for the elastic net norm minimization problem yields the unbiased estimator with the minimum variance.
Gradient Balancing (GraB) is a recently proposed technique that finds provably better data permutations when training models with multiple epochs over a finite dataset. It converges at a faster rate than the widely adopted Random Reshuffling, by minimizing the discrepancy of the gradients on adjacently selected examples. However, GraB only operates under critical assumptions such as small batch sizes and centralized data, leaving open the question of how to order examples at large scale -- i.e. distributed learning with decentralized data. To alleviate the limitation, in this paper we propose D-GraB that involves two novel designs: (1) $\textsf{PairBalance}$ that eliminates the requirement to use stale gradient mean in GraB which critically relies on small learning rates; (2) an ordering protocol that runs $\textsf{PairBalance}$ in a distributed environment with negligible overhead, which benefits from both data ordering and parallelism. We prove D-GraB enjoys linear speed up at rate $\tilde{O}((mnT)^{-2/3})$ on smooth non-convex objectives and $\tilde{O}((mnT)^{-2})$ under PL condition, where $n$ denotes the number of parallel workers, $m$ denotes the number of examples per worker and $T$ denotes the number of epochs. Empirically, we show on various applications including GLUE, CIFAR10 and WikiText-2 that D-GraB outperforms naive parallel GraB and Distributed Random Reshuffling in terms of both training and validation performance.
The Boolean Satisfiability (SAT) problem stands out as an attractive NP-complete problem in theoretic computer science and plays a central role in a broad spectrum of computing-related applications. Exploiting and tuning SAT solvers under numerous scenarios require massive high-quality industry-level SAT instances, which unfortunately are quite limited in the real world. To address the data insufficiency issue, in this paper, we propose W2SAT, a framework to generate SAT formulas by learning intrinsic structures and properties from given real-world/industrial instances in an implicit fashion. To this end, we introduce a novel SAT representation called Weighted Literal Incidence Graph (WLIG), which exhibits strong representation ability and generalizability against existing counterparts, and can be efficiently generated via a specialized learning-based graph generative model. Decoding from WLIGs into SAT problems is then modeled as finding overlapping cliques with a novel hill-climbing optimization method termed Optimal Weight Coverage (OWC). Experiments demonstrate the superiority of our WLIG-induced approach in terms of graph metrics, efficiency, and scalability in comparison to previous methods. Additionally, we discuss the limitations of graph-based SAT generation for real-world applications, especially when utilizing generated instances for SAT solver parameter-tuning, and pose some potential directions.
Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed with the assumption that agents' policies are based on accurate state information. However, policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial state perturbation attacks. In this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to investigate the fundamental properties of MARL under state uncertainties. Our analysis shows that the commonly used solution concepts of optimal agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this difficulty, we consider a new solution concept called robust agent policy, where agents aim to maximize the worst-case expected state value. We prove the existence of robust agent policy for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under state uncertainties. Our experiments demonstrate that our algorithm outperforms existing methods when faced with state perturbations and greatly improves the robustness of MARL policies. Our code is public on //songyanghan.github.io/what_is_solution/.