亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In Natural Language Processing (NLP), intelligent neuron models can be susceptible to textual Trojan attacks. Such attacks occur when Trojan models behave normally for standard inputs but generate malicious output for inputs that contain a specific trigger. Syntactic-structure triggers, which are invisible, are becoming more popular for Trojan attacks because they are difficult to detect and defend against. However, these types of attacks require a large corpus of training data to generate poisoned samples with the necessary syntactic structures for Trojan insertion. Obtaining such data can be difficult for attackers, and the process of generating syntactic poisoned triggers and inserting Trojans can be time-consuming. This paper proposes a solution called TrojText, which aims to determine whether invisible textual Trojan attacks can be performed more efficiently and cost-effectively without training data. The proposed approach, called the Representation-Logit Trojan Insertion (RLI) algorithm, uses smaller sampled test data instead of large training data to achieve the desired attack. The paper also introduces two additional techniques, namely the accumulated gradient ranking (AGR) and Trojan Weights Pruning (TWP), to reduce the number of tuned parameters and the attack overhead. The TrojText approach was evaluated on three datasets (AG's News, SST-2, and OLID) using three NLP models (BERT, XLNet, and DeBERTa). The experiments demonstrated that the TrojText approach achieved a 98.35\% classification accuracy for test sentences in the target class on the BERT model for the AG's News dataset. The source code for TrojText is available at //github.com/UCF-ML-Research/TrojText.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 潛在 · Learning · 原點 · 相關系數 ·
2023 年 10 月 10 日

Generative Adversarial Networks (GANs) can synthesize realistic images, with the learned latent space shown to encode rich semantic information with various interpretable directions. However, due to the unstructured nature of the learned latent space, it inherits the bias from the training data where specific groups of visual attributes that are not causally related tend to appear together, a phenomenon also known as spurious correlations, e.g., age and eyeglasses or women and lipsticks. Consequently, the learned distribution often lacks the proper modelling of the missing examples. The interpolation following editing directions for one attribute could result in entangled changes with other attributes. To address this problem, previous works typically adjust the learned directions to minimize the changes in other attributes, yet they still fail on strongly correlated features. In this work, we study the entanglement issue in both the training data and the learned latent space for the StyleGAN2-FFHQ model. We propose a novel framework SC$^2$GAN that achieves disentanglement by re-projecting low-density latent code samples in the original latent space and correcting the editing directions based on both the high-density and low-density regions. By leveraging the original meaningful directions and semantic region-specific layers, our framework interpolates the original latent codes to generate images with attribute combination that appears infrequently, then inverts these samples back to the original latent space. We apply our framework to pre-existing methods that learn meaningful latent directions and showcase its strong capability to disentangle the attributes with small amounts of low-density region samples added.

Generating diverse and sophisticated instructions for downstream tasks by Large Language Models (LLMs) is pivotal for advancing the effect. Current approaches leverage closed-source LLMs, employing in-context prompting for instruction generation. However, in this paper, we found that in-context prompting cannot generate complex instructions with length $\ge 100$ for tasks like code completion. To solve this problem, we introduce Ada-Instruct, an adaptive instruction generator developed by fine-tuning open-source LLMs. Our pivotal finding illustrates that fine-tuning open-source LLMs with a mere ten samples generates long instructions that maintain distributional consistency for complex reasoning tasks. We empirically validated Ada-Instruct's efficacy across different applications, including code completion, mathematical reasoning, and commonsense reasoning. The results underscore Ada-Instruct's superiority, evidencing its improvements over its base models, current self-instruct methods, and other state-of-the-art models.

The estimation of origin-destination (OD) matrices is a crucial aspect of Intelligent Transport Systems (ITS). It involves adjusting an initial OD matrix by regressing the current observations like traffic counts of road sections (e.g., using least squares). However, the OD estimation problem lacks sufficient constraints and is mathematically underdetermined. To alleviate this problem, some researchers incorporate a prior OD matrix as a target in the regression to provide more structural constraints. However, this approach is highly dependent on the existing prior matrix, which may be outdated. Others add structural constraints through sensor data, such as vehicle trajectory and speed, which can reflect more current structural constraints in real-time. Our proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization. This approach combines the advantages of both deep learning and numerical optimization algorithms. The neural network(NN) learns to infer structural constraints from probe traffic flows, eliminating dependence on prior information and providing real-time performance. Additionally, due to the generalization capability of NN, this method is economical in engineering. We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset. Subsequently, we verified the stability of our method on real traffic data. Our experiments provided confirmation of the benefits of combining NN and numerical optimization.

The Counter Narrative (CN) is a promising approach to combat online hate speech (HS) without infringing on freedom of speech. In recent years, there has been a growing interest in automatically generating CNs using natural language generation techniques. However, current automatic CN generation methods mainly rely on expert-authored datasets for training, which are time-consuming and labor-intensive to acquire. Furthermore, these methods cannot directly obtain and extend counter-knowledge from external statistics, facts, or examples. To address these limitations, we propose Retrieval-Augmented Unsupervised Counter Narrative Generation (RAUCG) to automatically expand external counter-knowledge and map it into CNs in an unsupervised paradigm. Specifically, we first introduce an SSF retrieval method to retrieve counter-knowledge from the multiple perspectives of stance consistency, semantic overlap rate, and fitness for HS. Then we design an energy-based decoding mechanism by quantizing knowledge injection, countering and fluency constraints into differentiable functions, to enable the model to build mappings from counter-knowledge to CNs without expert-authored CN data. Lastly, we comprehensively evaluate model performance in terms of language quality, toxicity, persuasiveness, relevance, and success rate of countering HS, etc. Experimental results show that RAUCG outperforms strong baselines on all metrics and exhibits stronger generalization capabilities, achieving significant improvements of +2.0% in relevance and +4.5% in success rate of countering metrics. Moreover, RAUCG enabled GPT2 to outperform T0 in all metrics, despite the latter being approximately eight times larger than the former. Warning: This paper may contain offensive or upsetting content!

Large Language Models (LLMs) have shown impressive abilities in various tasks. However, fundamentally improving them depends on high-quality datasets or computationally expensive fine-tuning. On the contrary, humans can easily improve themselves by self-thinking and memory, without external resources. In this paper, we propose a framework, MoT, to let the LLM self-improve through Memory-of-Thought, without annotated datasets and parameter updates. Specifically, MoT is divided into two stages: 1. before the test stage, the LLM pre-thinks on the unlabeled dataset and saves the high-confidence thoughts as external memory; 2. During the test stage, given a test question, the LLM recalls relevant memory to help itself reason and answer it. Experimental results show that MoT can help ChatGPT significantly improve its abilities in arithmetic reasoning, commonsense reasoning, factual reasoning, and natural language inference. Further analyses show that each component contributes critically to the improvements and MoT can lead to consistent improvements across various CoT methods and LLMs.

Large Language models (LLM) have demonstrated the capability to handle a variety of generative tasks. This paper presents the UniAudio system, which, unlike prior task-specific approaches, leverages LLM techniques to generate multiple types of audio (including speech, sounds, music, and singing) with given input conditions. UniAudio 1) first tokenizes all types of target audio along with other condition modalities, 2) concatenates source-target pair as a single sequence, and 3) performs next-token prediction using LLM. Also, a multi-scale Transformer model is proposed to handle the overly long sequences caused by the residual vector quantization based neural codec in tokenization. Training of UniAudio is scaled up to 165K hours of audio and 1B parameters, based on all generative tasks, aiming to obtain sufficient prior knowledge not only in the intrinsic properties of audio but also the inter-relationship between audio and other modalities. Therefore, the trained UniAudio model has the potential to become a foundation model for universal audio generation: it shows strong capability in all trained tasks and can seamlessly support new audio generation tasks after simple fine-tuning. Experiments demonstrate that UniAudio achieves state-of-the-art or at least competitive results on most of the 11 tasks. Demo and code are released at //github.com/yangdongchao/UniAudio

While models derived from Vision Transformers (ViTs) have been phonemically surging, pre-trained models cannot seamlessly adapt to arbitrary resolution images without altering the architecture and configuration, such as sampling the positional encoding, limiting their flexibility for various vision tasks. For instance, the Segment Anything Model (SAM) based on ViT-Huge requires all input images to be resized to 1024$\times$1024. To overcome this limitation, we propose the Multi-Head Self-Attention Convolution (MSA-Conv) that incorporates Self-Attention within generalized convolutions, including standard, dilated, and depthwise ones. Enabling transformers to handle images of varying sizes without retraining or rescaling, the use of MSA-Conv further reduces computational costs compared to global attention in ViT, which grows costly as image size increases. Later, we present the Vision Transformer in Convolution (TiC) as a proof of concept for image classification with MSA-Conv, where two capacity enhancing strategies, namely Multi-Directional Cyclic Shifted Mechanism and Inter-Pooling Mechanism, have been proposed, through establishing long-distance connections between tokens and enlarging the effective receptive field. Extensive experiments have been carried out to validate the overall effectiveness of TiC. Additionally, ablation studies confirm the performance improvement made by MSA-Conv and the two capacity enhancing strategies separately. Note that our proposal aims at studying an alternative to the global attention used in ViT, while MSA-Conv meets our goal by making TiC comparable to state-of-the-art on ImageNet-1K. Code will be released at //github.com/zs670980918/MSA-Conv.

Graph Neural Networks (GNNs) have emerged as a powerful representation learning framework for graph-structured data. A key limitation of conventional GNNs is their representation of each node with a singular feature vector, potentially overlooking intricate details about individual node features. Here, we propose an Attention-based Message-Passing layer for GNNs (AMPNet) that encodes individual features per node and models feature-level interactions through cross-node attention during message-passing steps. We demonstrate the abilities of AMPNet through extensive benchmarking on real-world biological systems such as fMRI brain activity recordings and spatial genomic data, improving over existing baselines by 20% on fMRI signal reconstruction, and further improving another 8% with positional embedding added. Finally, we validate the ability of AMPNet to uncover meaningful feature-level interactions through case studies on biological systems. We anticipate that our architecture will be highly applicable to graph-structured data where node entities encompass rich feature-level information.

Self-Supervised Learning (SSL) models have demonstrated exceptional performance in various speech tasks, particularly in low-resource and multilingual domains. Recent works show that fusing SSL models could achieve superior performance compared to using one SSL model. However, fusion models have increased model parameter size, leading to longer inference times. In this paper, we propose a novel approach of predicting other SSL models' features from a single SSL model, resulting in a light-weight framework with competitive performance. Our experiments show that SSL feature prediction models outperform individual SSL models in multilingual speech recognition tasks. The leading prediction model achieves an average SUPERB score increase of 135.4 in ML-SUPERB benchmarks. Moreover, our proposed framework offers an efficient solution, as it reduces the resulting model parameter size and inference times compared to previous fusion models.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

北京阿比特科技有限公司