亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There has been a growing interest in using deep learning models for processing long surgical videos, in order to automatically detect clinical/operational activities and extract metrics that can enable workflow efficiency tools and applications. However, training such models require vast amounts of labeled data which is costly and not scalable. Recently, self-supervised learning has been explored in computer vision community to reduce the burden of the annotation cost. Masked autoencoders (MAE) got the attention in self-supervised paradigm for Vision Transformers (ViTs) by predicting the randomly masked regions given the visible patches of an image or a video clip, and have shown superior performance on benchmark datasets. However, the application of MAE in surgical data remains unexplored. In this paper, we first investigate whether MAE can learn transferrable representations in surgical video domain. We propose SurgMAE, which is a novel architecture with a masking strategy based on sampling high spatio-temporal tokens for MAE. We provide an empirical study of SurgMAE on two large scale long surgical video datasets, and find that our method outperforms several baselines in low data regime. We conduct extensive ablation studies to show the efficacy of our approach and also demonstrate it's superior performance on UCF-101 to prove it's generalizability in non-surgical datasets as well.

相關內容

Diffusion models recently have been successfully applied for the visual synthesis of strikingly realistic appearing images. This raises strong concerns about their potential for malicious purposes. In this paper, we propose using the lightweight multi Local Intrinsic Dimensionality (multiLID), which has been originally developed in context of the detection of adversarial examples, for the automatic detection of synthetic images and the identification of the according generator networks. In contrast to many existing detection approaches, which often only work for GAN-generated images, the proposed method provides close to perfect detection results in many realistic use cases. Extensive experiments on known and newly created datasets demonstrate that multiLID exhibits superiority in diffusion detection and model identification. Since the empirical evaluations of recent publications on the detection of generated images is often too focused on the "LSUN-Bedroom" dataset, we further establish a comprehensive benchmark for the detection of diffusion-generated images, including samples from several diffusion models with different image sizes to evaluate the performance of their multiLID. Code for our experiments is provided at //github.com/deepfake-study/deepfake_multiLID.

Dynamic facial expression recognition (DFER) is essential to the development of intelligent and empathetic machines. Prior efforts in this field mainly fall into supervised learning paradigm, which is restricted by the limited labeled data in existing datasets. Inspired by recent unprecedented success of masked autoencoders (e.g., VideoMAE), this paper proposes MAE-DFER, a novel self-supervised method which leverages large-scale self-supervised pre-training on abundant unlabeled data to advance the development of DFER. Since the vanilla Vision Transformer (ViT) employed in VideoMAE requires substantial computation during fine-tuning, MAE-DFER develops an efficient local-global interaction Transformer (LGI-Former) as the encoder. LGI-Former first constrains self-attention in local spatiotemporal regions and then utilizes a small set of learnable representative tokens to achieve efficient local-global information exchange, thus avoiding the expensive computation of global space-time self-attention in ViT. Moreover, in addition to the standalone appearance content reconstruction in VideoMAE, MAE-DFER also introduces explicit facial motion modeling to encourage LGI-Former to excavate both static appearance and dynamic motion information. Extensive experiments on six datasets show that MAE-DFER consistently outperforms state-of-the-art supervised methods by significant margins, verifying that it can learn powerful dynamic facial representations via large-scale self-supervised pre-training. Besides, it has comparable or even better performance than VideoMAE, while largely reducing the computational cost (about 38\% FLOPs). We believe MAE-DFER has paved a new way for the advancement of DFER and can inspire more relavant research in this field and even other related tasks. Codes and models are publicly available at //github.com/sunlicai/MAE-DFER.

The combination of audio and vision has long been a topic of interest in the multi-modal community. Recently, a new audio-visual segmentation (AVS) task has been introduced, aiming to locate and segment the sounding objects in a given video. This task demands audio-driven pixel-level scene understanding for the first time, posing significant challenges. In this paper, we propose AVSegFormer, a novel framework for AVS tasks that leverages the transformer architecture. Specifically, we introduce audio queries and learnable queries into the transformer decoder, enabling the network to selectively attend to interested visual features. Besides, we present an audio-visual mixer, which can dynamically adjust visual features by amplifying relevant and suppressing irrelevant spatial channels. Additionally, we devise an intermediate mask loss to enhance the supervision of the decoder, encouraging the network to produce more accurate intermediate predictions. Extensive experiments demonstrate that AVSegFormer achieves state-of-the-art results on the AVS benchmark. The code is available at //github.com/vvvb-github/AVSegFormer.

Neural network-based survival methods can model data-driven covariate interactions. While these methods can provide better predictive performance than regression-based approaches, not all can model time-varying interactions and complex baseline hazards. To address this, we propose Case-Base Neural Networks (CBNNs) as a new approach that combines the case-base sampling framework with flexible neural network architectures. Using a novel sampling scheme and data augmentation to naturally account for censoring, we construct a feed-forward neural network that may take time as an input. CBNNs predict the probability of an event occurring at a given moment to estimate the hazard function. We compare the performance of CBNNs to regression and neural network-based survival methods in a simulation and three case studies using two time-dependent metrics. First, we examine performance on a simulation involving a complex baseline hazard and time-varying interactions to assess all methods, with CBNN outperforming competitors. Then, we apply all methods to three real data applications, with CBNNs outperforming the competing models in two studies and showing similar performance in the third. Our results highlight the benefit of combining case-base sampling with deep learning to provide a simple and flexible modeling framework for data-driven, time-varying interaction modeling of single event survival outcomes. An R package is available at //github.com/Jesse-Islam/cbnn.

This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

Image captioning is a challenging task that combines the field of computer vision and natural language processing. A variety of approaches have been proposed to achieve the goal of automatically describing an image, and recurrent neural network (RNN) or long-short term memory (LSTM) based models dominate this field. However, RNNs or LSTMs cannot be calculated in parallel and ignore the underlying hierarchical structure of a sentence. In this paper, we propose a framework that only employs convolutional neural networks (CNNs) to generate captions. Owing to parallel computing, our basic model is around 3 times faster than NIC (an LSTM-based model) during training time, while also providing better results. We conduct extensive experiments on MSCOCO and investigate the influence of the model width and depth. Compared with LSTM-based models that apply similar attention mechanisms, our proposed models achieves comparable scores of BLEU-1,2,3,4 and METEOR, and higher scores of CIDEr. We also test our model on the paragraph annotation dataset, and get higher CIDEr score compared with hierarchical LSTMs

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司