亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The need for skilled medical support is growing in the era of digital healthcare. This research presents an innovative strategy, utilizing the RuBERT model, for categorizing user inquiries in the field of medical consultation with a focus on expert specialization. By harnessing the capabilities of transformers, we fine-tuned the pre-trained RuBERT model on a varied dataset, which facilitates precise correspondence between queries and particular medical specialisms. Using a comprehensive dataset, we have demonstrated our approach's superior performance with an F1-score of over 92%, calculated through both cross-validation and the traditional split of test and train datasets. Our approach has shown excellent generalization across medical domains such as cardiology, neurology and dermatology. This methodology provides practical benefits by directing users to appropriate specialists for prompt and targeted medical advice. It also enhances healthcare system efficiency, reduces practitioner burden, and improves patient care quality. In summary, our suggested strategy facilitates the attainment of specific medical knowledge, offering prompt and precise advice within the digital healthcare field.

相關內容

Complex and nonlinear dynamical systems often involve parameters that change with time, accurate tracking of which is essential to tasks such as state estimation, prediction, and control. Existing machine-learning methods require full state observation of the underlying system and tacitly assume adiabatic changes in the parameter. Formulating an inverse problem and exploiting reservoir computing, we develop a model-free and fully data-driven framework to accurately track time-varying parameters from partial state observation in real time. In particular, with training data from a subset of the dynamical variables of the system for a small number of known parameter values, the framework is able to accurately predict the parameter variations in time. Low- and high-dimensional, Markovian and non-Markovian nonlinear dynamical systems are used to demonstrate the power of the machine-learning based parameter-tracking framework. Pertinent issues affecting the tracking performance are addressed.

Large medical imaging data sets are becoming increasingly available, but ensuring sample quality without significant artefacts is challenging. Existing methods for identifying imperfections in medical imaging rely on data-intensive approaches, compounded by a scarcity of artefact-rich scans for training machine learning models in clinical research. To tackle this problem, we propose a framework with four main components: 1) artefact generators inspired by magnetic resonance physics to corrupt brain MRI scans and augment a training dataset, 2) abstract and engineered features to represent images compactly, 3) a feature selection process depending on the artefact class to improve classification, and 4) SVM classifiers to identify artefacts. Our contributions are threefold: first, physics-based artefact generators produce synthetic brain MRI scans with controlled artefacts for data augmentation. This will avoid the labour-intensive collection and labelling process of scans with rare artefacts. Second, we propose a pool of abstract and engineered image features to identify 9 different artefacts for structural MRI. Finally, we use an artefact-based feature selection block that, for each class of artefacts, finds the set of features providing the best classification performance. We performed validation experiments on a large data set of scans with artificially-generated artefacts, and in a multiple sclerosis clinical trial where real artefacts were identified by experts, showing that the proposed pipeline outperforms traditional methods. In particular, our data augmentation increases performance by up to 12.5 percentage points on accuracy, precision, and recall. The computational efficiency of our pipeline enables potential real-time deployment, promising high-throughput clinical applications through automated image-processing pipelines driven by quality control systems.

While graph convolution based methods have become the de-facto standard for graph representation learning, their applications to disease prediction tasks remain quite limited, particularly in the classification of neurodevelopmental and neurodegenerative brain disorders. In this paper, we introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling, as well as skip connections and identity mapping. The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges, respectively, with the aim of augmenting predictive capabilities and providing a holistic perspective on the underlying mechanisms of brain disorders. Skip connections enable the direct flow of information from the input features to later layers of the network, while identity mapping helps maintain the structural information of the graph during feature learning. We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI), for the prediction of autism spectrum disorder and Alzheimer's disease, respectively. Experimental results demonstrate the competitive performance of our approach in comparison with recent baselines in terms of several evaluation metrics, achieving relative improvements of 50% and 13.56% in classification accuracy over graph convolutional networks on ABIDE and ADNI, respectively.

In harsh environments, organisms may self-organize into spatially patterned systems in various ways. So far, studies of ecosystem spatial self-organization have primarily focused on apparent orders reflected by regular patterns. However, self-organized ecosystems may also have cryptic orders that can be unveiled only through certain quantitative analyses. Here we show that disordered hyperuniformity as a striking class of hidden orders can exist in spatially self-organized vegetation landscapes. By analyzing the high-resolution remotely sensed images across the American drylands, we demonstrate that it is not uncommon to find disordered hyperuniform vegetation states characterized by suppressed density fluctuations at long range. Such long-range hyperuniformity has been documented in a wide range of microscopic systems. Our finding contributes to expanding this domain to accommodate natural landscape ecological systems. We use theoretical modeling to propose that disordered hyperuniform vegetation patterning can arise from three generalized mechanisms prevalent in dryland ecosystems, including (1) critical absorbing states driven by an ecological legacy effect, (2) scale-dependent feedbacks driven by plant-plant facilitation and competition, and (3) density-dependent aggregation driven by plant-sediment feedbacks. Our modeling results also show that disordered hyperuniform patterns can help ecosystems cope with arid conditions with enhanced functioning of soil moisture acquisition. However, this advantage may come at the cost of slower recovery of ecosystem structure upon perturbations. Our work highlights that disordered hyperuniformity as a distinguishable but underexplored ecosystem self-organization state merits systematic studies to better understand its underlying mechanisms, functioning, and resilience.

For the differential privacy under the sub-Gamma noise, we derive the asymptotic properties of a class of network models with binary values with a general link function. In this paper, we release the degree sequences of the binary networks under a general noisy mechanism with the discrete Laplace mechanism as a special case. We establish the asymptotic result including both consistency and asymptotically normality of the parameter estimator when the number of parameters goes to infinity in a class of network models. Simulations and a real data example are provided to illustrate asymptotic results.

The joint modeling of multiple longitudinal biomarkers together with a time-to-event outcome is a challenging modeling task of continued scientific interest. In particular, the computational complexity of high dimensional (generalized) mixed effects models often restricts the flexibility of shared parameter joint models, even when the subject-specific marker trajectories follow highly nonlinear courses. We propose a parsimonious multivariate functional principal components representation of the shared random effects. This allows better scalability, as the dimension of the random effects does not directly increase with the number of markers, only with the chosen number of principal component basis functions used in the approximation of the random effects. The functional principal component representation additionally allows to estimate highly flexible subject-specific random trajectories without parametric assumptions. The modeled trajectories can thus be distinctly different for each biomarker. We build on the framework of flexible Bayesian additive joint models implemented in the R-package 'bamlss', which also supports estimation of nonlinear covariate effects via Bayesian P-splines. The flexible yet parsimonious functional principal components basis used in the estimation of the joint model is first estimated in a preliminary step. We validate our approach in a simulation study and illustrate its advantages by analyzing a study on primary biliary cholangitis.

Causal investigations in observational studies pose a great challenge in scientific research where randomized trials or intervention-based studies are not feasible. Leveraging Shannon's seminal work on information theory, we consider a framework of asymmetry where any causal link between putative cause and effect must be explained through a mechanism governing the cause as well as a generative process yielding an effect of the cause. Under weak assumptions, this framework enables the assessment of whether X is a stronger predictor of Y or vice-versa. Under stronger identifiability assumptions our framework is able to distinguish between cause and effect using observational data. We establish key statistical properties of this framework. Our proposed methodology relies on scalable non-parametric density estimation using fast Fourier transformation. The resulting estimation method is manyfold faster than the classical bandwidth-based density estimation while maintaining comparable mean integrated squared error rates. We investigate key asymptotic properties of our methodology and introduce a data-splitting technique to facilitate inference. The key attraction of our framework is its inference toolkit, which allows researchers to quantify uncertainty in causal discovery findings. We illustrate the performance of our methodology through simulation studies as well as multiple real data examples.

Pancreatic ductal adenocarcinoma (PDAC) presents a critical global health challenge, and early detection is crucial for improving the 5-year survival rate. Recent medical imaging and computational algorithm advances offer potential solutions for early diagnosis. Deep learning, particularly in the form of convolutional neural networks (CNNs), has demonstrated success in medical image analysis tasks, including classification and segmentation. However, the limited availability of clinical data for training purposes continues to provide a significant obstacle. Data augmentation, generative adversarial networks (GANs), and cross-validation are potential techniques to address this limitation and improve model performance, but effective solutions are still rare for 3D PDAC, where contrast is especially poor owing to the high heterogeneity in both tumor and background tissues. In this study, we developed a new GAN-based model, named 3DGAUnet, for generating realistic 3D CT images of PDAC tumors and pancreatic tissue, which can generate the interslice connection data that the existing 2D CT image synthesis models lack. Our innovation is to develop a 3D U-Net architecture for the generator to improve shape and texture learning for PDAC tumors and pancreatic tissue. Our approach offers a promising path to tackle the urgent requirement for creative and synergistic methods to combat PDAC. The development of this GAN-based model has the potential to alleviate data scarcity issues, elevate the quality of synthesized data, and thereby facilitate the progression of deep learning models to enhance the accuracy and early detection of PDAC tumors, which could profoundly impact patient outcomes. Furthermore, this model has the potential to be adapted to other types of solid tumors, hence making significant contributions to the field of medical imaging in terms of image processing models.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司