亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pseudorandom states (PRS) are an important primitive in quantum cryptography. In this paper, we show that subset states can be used to construct PRSs. A subset state with respect to $S$, a subset of the computational basis, is \[ \frac{1}{\sqrt{|S|}}\sum_{i\in S} |i\rangle. \] As a technical centerpiece, we show that for any fixed subset size $|S|=s$ such that $s = 2^n/\omega(\mathrm{poly}(n))$ and $s=\omega(\mathrm{poly}(n))$, where $n$ is the number of qubits, a random subset state is information-theoretically indistinguishable from a Haar random state even provided with polynomially many copies. This range of parameter is tight. Our work resolves a conjecture by Ji, Liu and Song. Since subset states of small size have small entanglement across all cuts, this construction also illustrates a pseudoentanglement phenomenon.

相關內容

Bayesian Neural Networks (BNNs) have become one of the promising approaches for uncertainty estimation due to the solid theorical foundations. However, the performance of BNNs is affected by the ability of catching uncertainty. Instead of only seeking the distribution of neural network weights by in-distribution (ID) data, in this paper, we propose a new Bayesian Neural Network with an Attached structure (ABNN) to catch more uncertainty from out-of-distribution (OOD) data. We first construct a mathematical description for the uncertainty of OOD data according to the prior distribution, and then develop an attached Bayesian structure to integrate the uncertainty of OOD data into the backbone network. ABNN is composed of an expectation module and several distribution modules. The expectation module is a backbone deep network which focuses on the original task, and the distribution modules are mini Bayesian structures which serve as attachments of the backbone. In particular, the distribution modules aim at extracting the uncertainty from both ID and OOD data. We further provide theoretical analysis for the convergence of ABNN, and experimentally validate its superiority by comparing with some state-of-the-art uncertainty estimation methods Code will be made available.

Artificial Intelligence (AI) has become a ubiquitous part of society, but a key challenge exists in ensuring that humans are equipped with the required critical thinking and AI literacy skills to interact with machines effectively by understanding their capabilities and limitations. These skills are particularly important for learners to develop in the age of generative AI where AI tools can demonstrate complex knowledge and ability previously thought to be uniquely human. To activate effective human-AI partnerships in writing, this paper provides a first step toward conceptualizing the notion of critical learner interaction with AI. Using both theoretical models and empirical data, our preliminary findings suggest a general lack of Deep interaction with AI during the writing process. We believe that the outcomes can lead to better task and tool design in the future for learners to develop deep, critical thinking when interacting with AI.

Robots are being designed to help people in an increasing variety of settings--but seemingly little attention has been given so far to the specific needs of women, who represent roughly half of the world's population but are highly underrepresented in robotics. Here we used a speculative prototyping approach to explore this expansive design space: First, we identified some potential challenges of interest, including crimes and illnesses that disproportionately affect women, as well as potential opportunities for designers, which were visualized in five sketches. Then, one of the sketched scenarios was further explored by developing a prototype, of a robotic helper drone equipped with computer vision to detect hidden cameras that could be used to spy on women. While object detection introduced some errors, hidden cameras were identified with a reasonable accuracy of 80\% (Intersection over Union (IoU) score: 0.40). Our aim is that the identified challenges and opportunities could help spark discussion and inspire designers, toward realizing a safer, more inclusive future through responsible use of technology.

Imitation Learning (IL) is a promising paradigm for teaching robots to perform novel tasks using demonstrations. Most existing approaches for IL utilize neural networks (NN), however, these methods suffer from several well-known limitations: they 1) require large amounts of training data, 2) are hard to interpret, and 3) are hard to repair and adapt. There is an emerging interest in programmatic imitation learning (PIL), which offers significant promise in addressing the above limitations. In PIL, the learned policy is represented in a programming language, making it amenable to interpretation and repair. However, state-of-the-art PIL algorithms assume access to action labels and struggle to learn from noisy real-world demonstrations. In this paper, we propose PLUNDER, a novel PIL algorithm that integrates a probabilistic program synthesizer in an iterative Expectation-Maximization (EM) framework to address these shortcomings. Unlike existing PIL approaches, PLUNDER synthesizes probabilistic programmatic policies that are particularly well-suited for modeling the uncertainties inherent in real-world demonstrations. Our approach leverages an EM loop to simultaneously infer the missing action labels and the most likely probabilistic policy. We benchmark PLUNDER against several established IL techniques, and demonstrate its superiority across five challenging imitation learning tasks under noise. PLUNDER policies achieve 95% accuracy in matching the given demonstrations, outperforming the next best baseline by 19%. Additionally, policies generated by PLUNDER successfully complete the tasks 17% more frequently than the nearest baseline.

Music plays a huge part in shaping peoples' psychology and behavioral patterns. This paper investigates the connection between national anthems and different global indices with computational music analysis and statistical correlation analysis. We analyze national anthem musical data to determine whether certain musical characteristics are associated with peace, happiness, suicide rate, crime rate, etc. To achieve this, we collect national anthems from 169 countries and use computational music analysis techniques to extract pitch, tempo, beat, and other pertinent audio features. We then compare these musical characteristics with data on different global indices to ascertain whether a significant correlation exists. Our findings indicate that there may be a correlation between the musical characteristics of national anthems and the indices we investigated. The implications of our findings for music psychology and policymakers interested in promoting social well-being are discussed. This paper emphasizes the potential of musical data analysis in social research and offers a novel perspective on the relationship between music and social indices. The source code and data are made open-access for reproducibility and future research endeavors. It can be accessed at //bit.ly/na_code.

Recommender systems are intrinsically tied to a reliability/coverage dilemma: The more reliable we desire the forecasts, the more conservative the decision will be and thus, the fewer items will be recommended. This leads to a significant drop in the novelty of these systems, since instead of recommending uncertain unusual items, they focus on predicting items with guaranteed success. In this paper, we propose the inclusion of a new term in the learning process of matrix factorization-based recommender systems, called recklessness, that takes into account the variance of the output probability distribution of the predicted ratings. In this way, gauging this recklessness measure we can force more spiky output distribution, enabling the control of the risk level desired when making decisions about the reliability of a prediction. Experimental results demonstrate that recklessness not only allows for risk regulation but also improves the quantity and quality of predictions provided by the recommender system.

In molecular communication (MC), molecules are released from the transmitter to convey information. This paper considers a realistic molecule shift keying (MoSK) scenario with two species of molecule in two reservoirs, where the molecules are harvested from the environment and placed into different reservoirs, which are purified by exchanging molecules between the reservoirs. This process consumes energy, and for a reasonable energy cost, the reservoirs cannot be pure; thus, our MoSK transmitter is imperfect, releasing mixtures of both molecules for every symbol, resulting in inter-symbol interference (ISI). To mitigate ISI, the properties of the receiver are analyzed and a detection method based on the ratio of different molecules is proposed. Theoretical and simulation results are provided, showing that with the increase of energy cost, the system achieves better performance. The good performance of the proposed detection scheme is also demonstrated.

The effectiveness of Voting Advice Applications (VAA) is often compromised by the length of their questionnaires. To address user fatigue and incomplete responses, some applications (such as the Swiss Smartvote) offer a condensed version of their questionnaire. However, these condensed versions can not ensure the accuracy of recommended parties or candidates, which we show to remain below 40%. To tackle these limitations, this work introduces an adaptive questionnaire approach that selects subsequent questions based on users' previous answers, aiming to enhance recommendation accuracy while reducing the number of questions posed to the voters. Our method uses an encoder and decoder module to predict missing values at any completion stage, leveraging a two-dimensional latent space reflective of political science's traditional methods for visualizing political orientations. Additionally, a selector module is proposed to determine the most informative subsequent question based on the voter's current position in the latent space and the remaining unanswered questions. We validated our approach using the Smartvote dataset from the Swiss Federal elections in 2019, testing various spatial models and selection methods to optimize the system's predictive accuracy. Our findings indicate that employing the IDEAL model both as encoder and decoder, combined with a PosteriorRMSE method for question selection, significantly improves the accuracy of recommendations, achieving 74% accuracy after asking the same number of questions as in the condensed version.

Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

小貼士
登錄享
相關主題
北京阿比特科技有限公司