亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Audio-based classification techniques on body sounds have long been studied to support diagnostic decisions, particularly in pulmonary diseases. In response to the urgency of the COVID-19 pandemic, a growing number of models are developed to identify COVID-19 patients based on acoustic input. Most models focus on cough because the dry cough is the best-known symptom of COVID-19. However, other body sounds, such as breath and speech, have also been revealed to correlate with COVID-19 as well. In this work, rather than relying on a specific body sound, we propose Fused Audio Instance and Representation for COVID-19 Detection (FAIR4Cov). It relies on constructing a joint feature vector obtained from a plurality of body sounds in waveform and spectrogram representation. The core component of FAIR4Cov is a self-attention fusion unit that is trained to establish the relation of multiple body sounds and audio representations and integrate it into a compact feature vector. We set up our experiments on different combinations of body sounds using only waveform, spectrogram, and a joint representation of waveform and spectrogram. Our findings show that the use of self-attention to combine extracted features from cough, breath, and speech sounds leads to the best performance with an Area Under the Receiver Operating Characteristic Curve (AUC) score of 0.8658, a sensitivity of 0.8057, and a specificity of 0.7958. This AUC is 0.0227 higher than the one of the models trained on spectrograms only and 0.0847 higher than the one of the models trained on waveforms only. The results demonstrate that the combination of spectrogram with waveform representation helps to enrich the extracted features and outperforms the models with single representation.

相關內容

This study reviews and compares methods for single-label and multi-label text classification, categorized into bag-of-words, sequence-based, graph-based, and hierarchical methods. The comparison aggregates results from the literature over five single-label and seven multi-label datasets and complements them with new experiments. The findings reveal that all recently proposed graph-based and hierarchy-based methods fail to outperform pre-trained language models and sometimes perform worse than standard machine learning methods like a multilayer perceptron on a bag-of-words. To assess the true scientific progress in text classification, future work should thoroughly test against strong bag-of-words baselines and state-of-the-art pre-trained language models.

In this paper, we present an evolved version of Situational Graphs, which jointly models in a single optimizable factor graph (1) a pose graph, as a set of robot keyframes comprising associated measurements and robot poses, and (2) a 3D scene graph, as a high-level representation of the environment that encodes its different geometric elements with semantic attributes and the relational information between them. Specifically, our S-Graphs+ is a novel four-layered factor graph that includes: (1) a keyframes layer with robot pose estimates, (2) a walls layer representing wall surfaces, (3) a rooms layer encompassing sets of wall planes, and (4) a floors layer gathering the rooms within a given floor level. The above graph is optimized in real-time to obtain a robust and accurate estimate of the robots pose and its map, simultaneously constructing and leveraging high-level information of the environment. To extract this high-level information, we present novel room and floor segmentation algorithms utilizing the mapped wall planes and free-space clusters. We tested S-Graphs+ on multiple datasets, including simulated and real data of indoor environments from varying construction sites, and on a real public dataset of several indoor office areas. On average over our datasets, S-Graphs+ outperforms the accuracy of the second-best method by a margin of 10.67%, while extending the robot situational awareness by a richer scene model. Moreover, we make the software available as a docker file.

In the realm of facial analysis, accurate landmark detection is crucial for various applications, ranging from face recognition and expression analysis to animation. Conventional heatmap or coordinate regression-based techniques, however, often face challenges in terms of computational burden and quantization errors. To address these issues, we present the KeyPoint Positioning System (KeyPosS), a groundbreaking facial landmark detection framework that stands out from existing methods. For the first time, KeyPosS employs the True-range Multilateration algorithm, a technique originally used in GPS systems, to achieve rapid and precise facial landmark detection without relying on computationally intensive regression approaches. The framework utilizes a fully convolutional network to predict a distance map, which computes the distance between a Point of Interest (POI) and multiple anchor points. These anchor points are ingeniously harnessed to triangulate the POI's position through the True-range Multilateration algorithm. Notably, the plug-and-play nature of KeyPosS enables seamless integration into any decoding stage, ensuring a versatile and adaptable solution. We conducted a thorough evaluation of KeyPosS's performance by benchmarking it against state-of-the-art models on four different datasets. The results show that KeyPosS substantially outperforms leading methods in low-resolution settings while requiring a minimal time overhead. The code is available at //github.com/zhiqic/KeyPosS.

Games have been the perfect test-beds for artificial intelligence research for the characteristics that widely exist in real-world scenarios. Learning and optimisation, decision making in dynamic and uncertain environments, game theory, planning and scheduling, design and education are common research areas shared between games and real-world problems. Numerous open-source games or game-based environments have been implemented for studying artificial intelligence. In addition to single- or multi-player, collaborative or adversarial games, there has also been growing interest in implementing platforms for creative design in recent years. Those platforms provide ideal benchmarks for exploring and comparing artificial intelligence ideas and techniques. This paper reviews the game-based platforms for artificial intelligence research, discusses the research trend induced by the evolution of those platforms, and gives an outlook.

Most automatic speech processing systems register degraded performance when applied to noisy or reverberant speech. But how can one tell whether speech is noisy or reverberant? We propose Brouhaha, a neural network jointly trained to extract speech/non-speech segments, speech-to-noise ratios, and C50room acoustics from single-channel recordings. Brouhaha is trained using a data-driven approach in which noisy and reverberant audio segments are synthesized. We first evaluate its performance and demonstrate that the proposed multi-task regime is beneficial. We then present two scenarios illustrating how Brouhaha can be used on naturally noisy and reverberant data: 1) to investigate the errors made by a speaker diarization model (pyannote.audio); and 2) to assess the reliability of an automatic speech recognition model (Whisper from OpenAI). Both our pipeline and a pretrained model are open source and shared with the speech community.

Audio Deepfake Detection (ADD) aims to detect the fake audio generated by text-to-speech (TTS), voice conversion (VC) and replay, etc., which is an emerging topic. Traditionally we take the mono signal as input and focus on robust feature extraction and effective classifier design. However, the dual-channel stereo information in the audio signal also includes important cues for deepfake, which has not been studied in the prior work. In this paper, we propose a novel ADD model, termed as M2S-ADD, that attempts to discover audio authenticity cues during the mono-to-stereo conversion process. We first projects the mono to a stereo signal using a pretrained stereo synthesizer, then employs a dual-branch neural architecture to process the left and right channel signals, respectively. In this way, we effectively reveal the artifacts in the fake audio, thus improve the ADD performance. The experiments on the ASVspoof2019 database show that M2S-ADD outperforms all baselines that input mono. We release the source code at \url{//github.com/AI-S2-Lab/M2S-ADD}.

Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.

There has been appreciable progress in unsupervised network representation learning (UNRL) approaches over graphs recently with flexible random-walk approaches, new optimization objectives and deep architectures. However, there is no common ground for systematic comparison of embeddings to understand their behavior for different graphs and tasks. In this paper we theoretically group different approaches under a unifying framework and empirically investigate the effectiveness of different network representation methods. In particular, we argue that most of the UNRL approaches either explicitly or implicit model and exploit context information of a node. Consequently, we propose a framework that casts a variety of approaches -- random walk based, matrix factorization and deep learning based -- into a unified context-based optimization function. We systematically group the methods based on their similarities and differences. We study the differences among these methods in detail which we later use to explain their performance differences (on downstream tasks). We conduct a large-scale empirical study considering 9 popular and recent UNRL techniques and 11 real-world datasets with varying structural properties and two common tasks -- node classification and link prediction. We find that there is no single method that is a clear winner and that the choice of a suitable method is dictated by certain properties of the embedding methods, task and structural properties of the underlying graph. In addition we also report the common pitfalls in evaluation of UNRL methods and come up with suggestions for experimental design and interpretation of results.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

Most of the internet today is composed of digital media that includes videos and images. With pixels becoming the currency in which most transactions happen on the internet, it is becoming increasingly important to have a way of browsing through this ocean of information with relative ease. YouTube has 400 hours of video uploaded every minute and many million images are browsed on Instagram, Facebook, etc. Inspired by recent advances in the field of deep learning and success that it has gained on various problems like image captioning and, machine translation , word2vec , skip thoughts, etc, we present DeepSeek a natural language processing based deep learning model that allows users to enter a description of the kind of images that they want to search, and in response the system retrieves all the images that semantically and contextually relate to the query. Two approaches are described in the following sections.

北京阿比特科技有限公司