亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Next-generation wireless systems are rapidly evolving from communication-only systems to multi-modal systems with integrated sensing and communications. In this paper a novel joint sensing and communication framework is proposed for enabling wireless extended reality (XR) at terahertz (THz) bands. To gather rich sensing information and a higher line-of-sight (LoS) availability, THz-operated reconfigurable intelligent surfaces (RISs) acting as base stations are deployed. The sensing parameters are extracted by leveraging THz's quasi-opticality and opportunistically utilizing uplink communication waveforms. This enables the use of the same waveform, spectrum, and hardware for both sensing and communication purposes. The environmental sensing parameters are then derived by exploiting the sparsity of THz channels via tensor decomposition. Hence, a high-resolution indoor mapping is derived so as to characterize the spatial availability of communications and the mobility of users. Simulation results show that in the proposed framework, the resolution and data rate of the overall system are positively correlated, thus allowing a joint optimization between these metrics with no tradeoffs. Results also show that the proposed framework improves the system reliability in static and mobile systems. In particular, the highest reliability gains of 10% in reliability are achieved in a walking speed mobile environment compared to communication only systems with beam tracking.

相關內容

Unmanned aerial vehicles (UAVs)-based applications, such as surveillance systems and wireless relays, are attracting increasing attention from academia and industrial fields. The high-performance aerial communication system is one of the key enablers for them. However, due to the low attenuation of radio waves in the air-to-ground channels, the interference between aerial and terrestrial communication systems would significantly deteriorate their communication performance and greatly limit the potential UAV applications. To address the problem, in this paper, the spectrum sharing strategy between a multiple UAV communication system, in which both UAVs and ground station (GS) are equipped with directional antennas, and terrestrial systems is proposed. The GS position is selected and the flyable areas of the UAVs using certain spectrum resources are defined in advance using prior knowledge from spectrum monitoring on terrestrial communication systems to minimize interference and maximize the flyable areas of the UAVs instead of the low-efficient dynamic channel sensing and allocation for interference elimination. The simulations are conducted through a case study of the spectrum sharing between a multi-UAV video transmission system and the terrestrial wireless local area network (WLAN) system in the 5.7GHz band. The simulation results show that thanks to the proposed system the entire area can be enabled for UAV flight.

UAV-based wireless systems, such as wireless relay and remote sensing, have attracted great attentions from academia and industry. To realize them, a high-performance wireless aerial communication system, which bridges UAVs and ground stations, is one of the key enablers. However, there are still issues hindering its development, such as the severe co-channel interference among UAVs, and the limited payload/battery-life of UAVs. To address the challenges, we propose an aerial communication system which enables system-level full-duplex communication of multiple UAVs with lower hardware complexities than ideal full-duplex communication systems. In the proposed system, each channel is re-assigned to the uplink and downlink of a pair of UAVs, and each UAV employ a pair of separated channels for its uplink and downlink. The co-channel interference between UAVs that reuse same channels is eliminated by exploiting advantages of UAVs' maneuverability and high-gain directional antennas equipped in UAVs and ground stations, so that dedicated cancellers are not necessary in the proposed system. The system design and performance analysis are given, and the simulation results well agree with the designs.

A high performance multi-UAV communication system, which bridges multiple UAVs and ground station, is one of the key enablers to realize a variety of UAV-based systems. To address the issues such as the low spectrum efficiency caused by the co-channel interference, we have proposed a spectrum-efficient full-duplex multi-UA V communication system with low hardware complexity. In this paper, on-ground experiments are conducted to confirm the feasibility and effectiveness of the key feature of the proposed system, i.e., co-channel interference cancellation among UAVs by directional antennas and UAV position control, instead of energy-consuming dedicated self-interference cancellers on UAVs in traditional full-duplex systems. Channel power of interference link between a pair of two UAVs reusing the same channel is measured, and the achievable channel capacity is also measured by a prototype system implemented by software-defined radio devices. The results of different antennas and different antenna heights are also compared. The experimental results agree well with the designs and confirm the feasibility and effectiveness of the proposed system. This ground experiment is a work in progress to provide preliminary results for the multi-UAV-based experiments in the air in the future.

In this paper, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In particular, in the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that will generate a global FL model and send it back to the users. Since all training parameters are transmitted over wireless links, the quality of the training will be affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS must select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To address this problem, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can reduce the FL loss function value by up to 10% and 16%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation and 2) a standard FL algorithm with random user selection and resource allocation.

Driven by the fast development of Internet of Things (IoT) applications, tremendous data need to be collected by sensors and passed to the servers for further process. As a promising solution, the mobile crowd sensing (MCS) enables controllable sensing and transmission processes for multiple types of data in a single device. To achieve the energy efficient MCS, the data sensing and transmission over a long-term time duration should be designed accounting for the differentiated requirements of IoT tasks including data size and delay tolerance. The said design is achieved by jointly optimizing the sensing and transmission rates, which leads to a complex optimization problem due to the restraining relationship between the controlling variables as well as the existence of busy time interval during which no data can be sensed. To deal with such problem, a vital concept namely height is introduced, based on which the classical string-pulling algorithms can be applied for obtaining the corresponding optimal sensing and transmission rates. Therefore, the original rates optimization problem can be converted to a searching problem for the optimal height. Based on the property of the objective function, the upper and lower bounds of the area where the optimal height lies in are derived. The whole searching area is further divided into a series of sub-areas due to the format change of the objective function with the varying heights. Finally, the optimal height in each sub-area is obtained based on the convexity of the objective function and the global optimal height is further determined by comparing the local optimums. The above solving approach is further extended for the case with limited data buffer capacity of the server. Simulations are conducted to evaluate the performance of the proposed design.

The exponential growth of distributed energy resources is enabling the transformation of traditional consumers in the smart grid into prosumers. Such transition presents a promising opportunity for sustainable energy trading. Yet, the integration of prosumers in the energy market imposes new considerations in designing unified and sustainable frameworks for efficient use of the power and communication infrastructure. Furthermore, several issues need to be tackled to adequately promote the adoption of decentralized renewable-oriented systems, such as communication overhead, data privacy, scalability, and sustainability. In this article, we present the different aspects and challenges to be addressed for building efficient energy trading markets in relation to communication and smart decision-making. Accordingly, we propose a multi-level pro-decision framework for prosumer communities to achieve collective goals. Since the individual decisions of prosumers are mainly driven by individual self-sufficiency goals, the framework prioritizes the individual prosumers' decisions and relies on the 5G wireless network for fast coordination among community members. In fact, each prosumer predicts energy production and consumption to make proactive trading decisions as a response to collective-level requests. Moreover, the collaboration of the community is further extended by including the collaborative training of prediction models using Federated Learning, assisted by edge servers and prosumer home-area equipment. In addition to preserving prosumers' privacy, we show through evaluations that training prediction models using Federated Learning yields high accuracy for different energy resources while reducing the communication overhead.

In this paper, we analyze the performance of a reconfigurable intelligent surface (RIS)-assisted unmanned aerial vehicle (UAV) wireless system that is affected by mixture-gamma small-scale fading, stochastic disorientation, and misalignment, as well as transceivers hardware imperfections. First, we statistically characterize the end-to-end channel for both cases, i.e., in the absence as well as in the presence of disorientation and misalignment, by extracting closed-form formulas for the probability density function (PDF) and the cumulative distribution function (CDF). Building on the aforementioned expressions, we extract novel closed-form expressions for the outage probability (OP) in the absence and the presence of disorientation and misalignment as well as hardware imperfections. In addition, high signal-to-noise ratio OP approximations are derived, leading to the extraction of the diversity order. Finally, an OP floor due to disorientation and misalignment is presented.

Energy efficiency (EE) plays a key role in future wireless communication network and it is easily to achieve high EE performance in low SNR regime. In this paper, a new high EE scheme is proposed for a MIMO wireless communication system working in the low SNR regime by using two dimension resource allocation. First, we define the high EE area based on the relationship between the transmission power and the SNR. To meet the constraint of the high EE area, both frequency and space dimension are needed. Besides analysing them separately, we decided to consider frequency and space dimensions as a unit and proposed a two-dimension scheme. Furthermore, considering communication in the high EE area may cause decline of the communication quality, we add quality-of-service(QoS) constraint into the consideration and derive the corresponding EE performance based on the effective capacity. We also derive an approximate expression to simplify the complex EE performance. Finally, our numerical results demonstrate the effectiveness of the proposed scheme.

This paper investigates the interference nulling capability of reconfigurable intelligent surface (RIS) in a multiuser environment where multiple single-antenna transceivers communicate simultaneously in a shared spectrum. From a theoretical perspective, we show that when the channels between the RIS and the transceivers have line-of-sight and the direct paths are blocked, it is possible to adjust the phases of the RIS elements to null out all the interference completely and to achieve the maximum $K$ degrees-of-freedom (DoF) in the overall $K$-user interference channel, provided that the number of RIS elements exceeds some finite value that depends on $K$. Algorithmically, for any fixed channel realization we formulate the interference nulling problem as a feasibility problem, and propose an alternating projection algorithm to efficiently solve the resulting nonconvex problem with local convergence guarantee. Numerical results show that the proposed alternating projection algorithm can null all the interference if the number of RIS elements is only slightly larger than a threshold of $2K(K-1)$. For the practical sum-rate maximization objective, this paper proposes to use the zero-forcing solution obtained from alternating projection as an initial point for subsequent Riemannian conjugate gradient optimization and shows that it has a significant performance advantage over random initializations. For the objective of maximizing the minimum rate, this paper proposes a subgradient projection method which is capable of achieving excellent performance at low complexity.

In Vitro Fertilization (IVF) is the most widely used Assisted Reproductive Technology (ART). IVF usually involves controlled ovarian stimulation, oocyte retrieval, fertilization in the laboratory with subsequent embryo transfer. The first two steps correspond with follicular phase of females and ovulation in their menstrual cycle. Therefore, we refer to it as the treatment cycle in our paper. The treatment cycle is crucial because the stimulation medications in IVF treatment are applied directly on patients. In order to optimize the stimulation effects and lower the side effects of the stimulation medications, prompt treatment adjustments are in need. In addition, the quality and quantity of the retrieved oocytes have a significant effect on the outcome of the following procedures. To improve the IVF success rate, we propose a knowledge-based decision support system that can provide medical advice on the treatment protocol and medication adjustment for each patient visit during IVF treatment cycle. Our system is efficient in data processing and light-weighted which can be easily embedded into electronic medical record systems. Moreover, an oocyte retrieval oriented evaluation demonstrates that our system performs well in terms of accuracy of advice for the protocols and medications.

北京阿比特科技有限公司