亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The question of how "smart" active agents, like insects, microorganisms, or future colloidal robots need to steer to optimally reach or discover a target, such as an odor source, food, or a cancer cell in a complex environment has recently attracted great interest. Here, we provide an overview of recent developments, regarding such optimal navigation problems, from the micro- to the macroscale, and give a perspective by discussing some of the challenges which are ahead of us. Besides exemplifying an elementary approach to optimal navigation problems, the article focuses on works utilizing machine learning-based methods. Such learning-based approaches can uncover highly efficient navigation strategies even for problems that involve e.g. chaotic, high-dimensional, or unknown environments and are hardly solvable based on conventional analytical or simulation methods.

相關內容

Adaptive machines have the potential to assist or interfere with human behavior in a range of contexts, from cognitive decision-making to physical device assistance. Therefore it is critical to understand how machine learning algorithms can influence human actions, particularly in situations where machine goals are misaligned with those of people. Since humans continually adapt to their environment using a combination of explicit and implicit strategies, when the environment contains an adaptive machine, the human and machine play a game. Game theory is an established framework for modeling interactions between two or more decision-makers that has been applied extensively in economic markets and machine algorithms. However, existing approaches make assumptions about, rather than empirically test, how adaptation by individual humans is affected by interaction with an adaptive machine. Here we tested learning algorithms for machines playing general-sum games with human subjects. Our algorithms enable the machine to select the outcome of the co-adaptive interaction from a constellation of game-theoretic equilibria in action and policy spaces. Importantly, the machine learning algorithms work directly from observations of human actions without solving an inverse problem to estimate the human's utility function as in prior work. Surprisingly, one algorithm can steer the human-machine interaction to the machine's optimum, effectively controlling the human's actions even while the human responds optimally to their perceived cost landscape. Our results show that game theory can be used to predict and design outcomes of co-adaptive interactions between intelligent humans and machines.

This paper presents machine-learning methods to address various problems in Greek philology. After training a BERT model on the largest premodern Greek dataset used for this purpose to date, we identify and correct previously undetected errors made by scribes in the process of textual transmission, in what is, to our knowledge, the first successful identification of such errors via machine learning. Additionally, we demonstrate the model's capacity to fill gaps caused by material deterioration of premodern manuscripts and compare the model's performance to that of a domain expert. We find that best performance is achieved when the domain expert is provided with model suggestions for inspiration. With such human-computer collaborations in mind, we explore the model's interpretability and find that certain attention heads appear to encode select grammatical features of premodern Greek.

We present IndoorSim-to-OutdoorReal (I2O), an end-to-end learned visual navigation approach, trained solely in simulated short-range indoor environments, and demonstrates zero-shot sim-to-real transfer to the outdoors for long-range navigation on the Spot robot. Our method uses zero real-world experience (indoor or outdoor), and requires the simulator to model no predominantly-outdoor phenomenon (sloped grounds, sidewalks, etc). The key to I2O transfer is in providing the robot with additional context of the environment (i.e., a satellite map, a rough sketch of a map by a human, etc.) to guide the robot's navigation in the real-world. The provided context-maps do not need to be accurate or complete -- real-world obstacles (e.g., trees, bushes, pedestrians, etc.) are not drawn on the map, and openings are not aligned with where they are in the real-world. Crucially, these inaccurate context-maps provide a hint to the robot about a route to take to the goal. We find that our method that leverages Context-Maps is able to successfully navigate hundreds of meters in novel environments, avoiding novel obstacles on its path, to a distant goal without a single collision or human intervention. In comparison, policies without the additional context fail completely. Lastly, we test the robustness of the Context-Map policy by adding varying degrees of noise to the map in simulation. We find that the Context-Map policy is surprisingly robust to noise in the provided context-map. In the presence of significantly inaccurate maps (corrupted with 50% noise, or entirely blank maps), the policy gracefully regresses to the behavior of a policy with no context. Videos are available at //www.joannetruong.com/projects/i2o.html

Theoretical studies on transfer learning or domain adaptation have so far focused on situations with a known hypothesis class or model; however in practice, some amount of model selection is usually involved, often appearing under the umbrella term of hyperparameter-tuning: for example, one may think of the problem of tuning for the right neural network architecture towards a target task, while leveraging data from a related source task. Now, in addition to the usual tradeoffs on approximation vs estimation errors involved in model selection, this problem brings in a new complexity term, namely, the transfer distance between source and target distributions, which is known to vary with the choice of hypothesis class. We present a first study of this problem, focusing on classification; in particular, the analysis reveals some remarkable phenomena: adaptive rates, i.e., those achievable with no distributional information, can be arbitrarily slower than oracle rates, i.e., when given knowledge on distances.

The Naive Bayesian classifier is a popular classification method employing the Bayesian paradigm. The concept of having conditional dependence among input variables sounds good in theory but can lead to a majority vote style behaviour. Achieving conditional independence is often difficult, and they introduce decision biases in the estimates. In Naive Bayes, certain features are called independent features as they have no conditional correlation or dependency when predicting a classification. In this paper, we focus on the optimal partition of features by proposing a novel technique called the Comonotone-Independence Classifier (CIBer) which is able to overcome the challenges posed by the Naive Bayes method. For different datasets, we clearly demonstrate the efficacy of our technique, where we achieve lower error rates and higher or equivalent accuracy compared to models such as Random Forests and XGBoost.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely neglected recently due to the availability of vast amount of data, and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors. A great challenge for using knowledge bases for recommendation is how to integrated large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements on knowledge base embedding sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge. In this work, we propose to reason over knowledge base embeddings for personalized recommendation. Specifically, we propose a knowledge base representation learning approach to embed heterogeneous entities for recommendation. Experimental results on real-world dataset verified the superior performance of our approach compared with state-of-the-art baselines.

北京阿比特科技有限公司