亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Techniques of hybridisation and ensemble learning are popular model fusion techniques for improving the predictive power of forecasting methods. With limited research that instigates combining these two promising approaches, this paper focuses on the utility of the Exponential-Smoothing-Recurrent Neural Network (ES-RNN) in the pool of base models for different ensembles. We compare against some state of the art ensembling techniques and arithmetic model averaging as a benchmark. We experiment with the M4 forecasting data set of 100,000 time-series, and the results show that the Feature-based Forecast Model Averaging (FFORMA), on average, is the best technique for late data fusion with the ES-RNN. However, considering the M4's Daily subset of data, stacking was the only successful ensemble at dealing with the case where all base model performances are similar. Our experimental results indicate that we attain state of the art forecasting results compared to N-BEATS as a benchmark. We conclude that model averaging is a more robust ensemble than model selection and stacking strategies. Further, the results show that gradient boosting is superior for implementing ensemble learning strategies.

相關內容

Neural Architecture Search (NAS) has significantly improved productivity in the design and deployment of neural networks (NN). As NAS typically evaluates multiple models by training them partially or completely, the improved productivity comes at the cost of significant carbon footprint. To alleviate this expensive training routine, zero-shot/cost proxies analyze an NN at initialization to generate a score, which correlates highly with its true accuracy. Zero-cost proxies are currently designed by experts conducting multiple cycles of empirical testing on possible algorithms, data-sets, and neural architecture design spaces. This lowers productivity and is an unsustainable approach towards zero-cost proxy design as deep learning use-cases diversify in nature. Additionally, existing zero-cost proxies fail to generalize across neural architecture design spaces. In this paper, we propose a genetic programming framework to automate the discovery of zero-cost proxies for neural architecture scoring. Our methodology efficiently discovers an interpretable and generalizable zero-cost proxy that gives state of the art score-accuracy correlation on all data-sets and search spaces of NASBench-201 and Network Design Spaces (NDS). We believe that this research indicates a promising direction towards automatically discovering zero-cost proxies that can work across network architecture design spaces, data-sets, and tasks.

The widespread adoption of deep neural networks in computer vision applications has brought forth a significant interest in adversarial robustness. Existing research has shown that maliciously perturbed inputs specifically tailored for a given model (i.e., adversarial examples) can be successfully transferred to another independently trained model to induce prediction errors. Moreover, this property of adversarial examples has been attributed to features derived from predictive patterns in the data distribution. Thus, we are motivated to investigate the following question: Can adversarial defenses, like adversarial examples, be successfully transferred to other independently trained models? To this end, we propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE). After examining theoretical motivation and implications, we experimentally show that our method can provide adversarial robustness to multiple independently pre-trained classifiers that are otherwise ineffective against an adaptive white box adversary. Furthermore, we show that RTFEs can even provide one-shot adversarial robustness to models independently trained on different datasets.

Search-based approaches have been used in the literature to automate the process of creating unit test cases. However, related work has shown that generated unit-tests with high code coverage could be ineffective, i.e., they may not detect all faults or kill all injected mutants. In this paper, we propose CLING, an integration-level test case generation approach that exploits how a pair of classes, the caller and the callee, interact with each other through method calls. In particular, CLING generates integration-level test cases that maximize the Coupled Branches Criterion (CBC). Coupled branches are pairs of branches containing a branch of the caller and a branch of the callee such that an integration test that exercises the former also exercises the latter. CBC is a novel integration-level coverage criterion, measuring the degree to which a test suite exercises the interactions between a caller and its callee classes. We implemented CLING and evaluated the approach on 140 pairs of classes from five different open-source Java projects. Our results show that (1) CLING generates test suites with high CBC coverage, thanks to the definition of the test suite generation as a many-objectives problem where each couple of branches is an independent objective; (2) such generated suites trigger different class interactions and can kill on average 7.7% (with a maximum of 50%) of mutants that are not detected by tests generated at the unit level; (3) CLING can detect integration faults coming from wrong assumptions about the usage of the callee class (32 for our subject systems) that remain undetected when using automatically generated unit-level test suites.

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

北京阿比特科技有限公司