亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present a simultaneous exploration and object search framework for the application of autonomous trolley collection. For environment representation, a task-oriented environment partitioning algorithm is presented to extract diverse information for each sub-task. First, LiDAR data is classified as potential objects, walls, and obstacles after outlier removal. Segmented point clouds are then transformed into a hybrid map with the following functional components: object proposals to avoid missing trolleys during exploration; room layouts for semantic space segmentation; and polygonal obstacles containing geometry information for efficient motion planning. For exploration and simultaneous trolley collection, we propose an efficient exploration-based object search method. First, a traveling salesman problem with precedence constraints (TSP-PC) is formulated by grouping frontiers and object proposals. The next target is selected by prioritizing object search while avoiding excessive robot backtracking. Then, feasible trajectories with adequate obstacle clearance are generated by topological graph search. We validate the proposed framework through simulations and demonstrate the system with real-world autonomous trolley collection tasks.

相關內容

In this paper, we aim to build a novel bandits algorithm that is capable of fully harnessing the power of multi-dimensional data and the inherent non-linearity of reward functions to provide high-usable and accountable decision-making services. To this end, we introduce a generalized low-rank tensor contextual bandits model in which an action is formed from three feature vectors, and thus can be represented by a tensor. In this formulation, the reward is determined through a generalized linear function applied to the inner product of the action's feature tensor and a fixed but unknown parameter tensor with a low tubal rank. To effectively achieve the trade-off between exploration and exploitation, we introduce a novel algorithm called "Generalized Low-Rank Tensor Exploration Subspace then Refine" (G-LowTESTR). This algorithm first collects raw data to explore the intrinsic low-rank tensor subspace information embedded in the decision-making scenario, and then converts the original problem into an almost lower-dimensional generalized linear contextual bandits problem. Rigorous theoretical analysis shows that the regret bound of G-LowTESTR is superior to those in vectorization and matricization cases. We conduct a series of simulations and real data experiments to further highlight the effectiveness of G-LowTESTR, leveraging its ability to capitalize on the low-rank tensor structure for enhanced learning.

In this paper, we consider simultaneous estimation of Poisson parameters in situations where we can use side information in aggregated data. We use standardized squared error and entropy loss functions. Bayesian shrinkage estimators are derived based on conjugate priors. We compare the risk functions of direct estimators and Bayesian estimators with respect to different priors that are constructed based on different subsets of observations. We obtain conditions for domination and also prove minimaxity and admissibility in a simple setting.

This study examines the adaptation of the problem-solving studio to computer science education by combining it with pair programming. Pair programming is a software engineering practice in industry, but has seen mixed results in the classroom. Recent research suggests that pair programming has promise and potential to be an effective pedagogical tool, however what constitutes good instructional design and implementation for pair programming in the classroom is not clear. We developed a framework for instructional design for pair programming by adapting the problem-solving studio (PSS), a pedagogy originally from biomedical engineering. PSS involves teams of students solving open-ended problems with real-time feedback given by the instructor. Notably, PSS uses problems of adjustable difficulty to keep students of all levels engaged and functioning within the zone of proximal development. The course structure has three stages, first starting with demonstration, followed by a PSS session, then finishing with a debrief. We studied the combination of PSS and pair programming in a CS1 class over three years. Surveys of the students report a high level of engagement, learning, and motivation.

In this work we test the ability of deep learning methods to provide an end-to-end mapping between low and high resolution images applying it to the iris recognition problem. Here, we propose the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and Convolutional Neural Networks (CNN) with the most possible lightweight structure to achieve fast speed, preserve local information and reduce artifacts at the same time. We validate the methods with a database of 1.872 near-infrared iris images with quality assessment and recognition experiments showing the superiority of deep learning approaches over the compared algorithms.

This paper introduces a two-stage framework designed to enhance long-tail class incremental learning, enabling the model to progressively learn new classes, while mitigating catastrophic forgetting in the context of long-tailed data distributions. Addressing the challenge posed by the under-representation of tail classes in long-tail class incremental learning, our approach achieves classifier alignment by leveraging global variance as an informative measure and class prototypes in the second stage. This process effectively captures class properties and eliminates the need for data balancing or additional layer tuning. Alongside traditional class incremental learning losses in the first stage, the proposed approach incorporates mixup classes to learn robust feature representations, ensuring smoother boundaries. The proposed framework can seamlessly integrate as a module with any class incremental learning method to effectively handle long-tail class incremental learning scenarios. Extensive experimentation on the CIFAR-100 and ImageNet-Subset datasets validates the approach's efficacy, showcasing its superiority over state-of-the-art techniques across various long-tail CIL settings.

In this paper, a stochastic geometry based analytical framework is proposed for secure simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted non-orthogonal multiple access (NOMA) transmissions, where legitimate users (LUs) and eavesdroppers are randomly distributed. Both the time-switching protocol (TS) and energy splitting (ES) protocol are considered for the STAR-RIS. To characterize system performance, the channel statistics are first provided, and the Gamma approximation is adopted for general cascaded $\kappa$-$\mu$ fading. Afterward, the closed-form expressions for both the secrecy outage probability (SOP) and average secrecy capacity (ASC) are derived. To obtain further insights, the asymptotic performance for the secrecy diversity order and the secrecy slope are deduced. The theoretical results show that 1) the secrecy diversity orders of the strong LU and the weak LU depend on the path loss exponent and the distribution of the received signal-to-noise ratio, respectively; 2) the secrecy slope of the ES protocol achieves the value of one, higher than the slope of the TS protocol which is the mode operation parameter of TS. The numerical results demonstrate that: 1) there is an optimal STAR-RIS mode operation parameter to maximize the secrecy performance; 2) the STAR-RIS-NOMA significantly outperforms the STAR-RIS-orthogonal multiple access.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司