亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sinc-collocation methods are known to be efficient for Fredholm integral equations of the second kind, even if functions in the equations have endpoint singularity. However, existing methods have the disadvantage of inconsistent collocation points. This inconsistency complicates the implementation of such methods, particularly for large-scale problems. To overcome this drawback, this study proposes another Sinc-collocation methods with consistent collocation points. The results of a theoretical error analysis show that the proposed methods have the same convergence property as existing methods. Numerical experiments suggest the superiority of the proposed methods in terms of implementation and computational cost.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

This paper concerns an expansion of first-order Belnap-Dunn logic which is called $\mathrm{BD}^{\supset,\mathsf{F}}$. Its connectives and quantifiers are all familiar from classical logic and its logical consequence relation is very closely connected to the one of classical logic. Results that convey this close connection are established. Fifteen classical laws of logical equivalence are used to distinguish $\mathrm{BD}^{\supset,\mathsf{F}}$ from all other four-valued logics with the same connectives and quantifiers whose logical consequence relation is as closely connected to the logical consequence relation of classical logic. It is shown that several interesting non-classical connectives added to Belnap-Dunn logic in its expansions that have been studied earlier are definable in $\mathrm{BD}^{\supset,\mathsf{F}}$. It is also established that $\mathrm{BD}^{\supset,\mathsf{F}}$ is both paraconsistent and paracomplete. Moreover, a sequent calculus proof system that is sound and complete with respect to the logical consequence relation of $\mathrm{BD}^{\supset,\mathsf{F}}$ is presented.

The aim of this work is to present a model reduction technique in the framework of optimal control problems for partial differential equations. We combine two approaches used for reducing the computational cost of the mathematical numerical models: domain-decomposition (DD) methods and reduced-order modelling (ROM). In particular, we consider an optimisation-based domain-decomposition algorithm for the parameter-dependent stationary incompressible Navier-Stokes equations. Firstly, the problem is described on the subdomains coupled at the interface and solved through an optimal control problem, which leads to the complete separation of the subdomain problems in the DD method. On top of that, a reduced model for the obtained optimal-control problem is built; the procedure is based on the Proper Orthogonal Decomposition technique and a further Galerkin projection. The presented methodology is tested on two fluid dynamics benchmarks: the stationary backward-facing step and lid-driven cavity flow. The numerical tests show a significant reduction of the computational costs in terms of both the problem dimensions and the number of optimisation iterations in the domain-decomposition algorithm.

We study the numerical solution of a Cahn-Hilliard/Allen-Cahn system with strong coupling through state and gradient dependent non-diagonal mobility matrices. A fully discrete approximation scheme in space and time is proposed which preserves the underlying gradient flow structure and leads to dissipation of the free-energy on the discrete level. Existence and uniqueness of the discrete solution is established and relative energy estimates are used to prove optimal convergence rates in space and time under minimal smoothness assumptions. Numerical tests are presented for illustration of the theoretical results and to demonstrate the viability of the proposed methods.

We consider finite element approximations to the optimal constant for the Hardy inequality with exponent $p=2$ in bounded domains of dimension $n=1$ or $n\geq 3$. For finite element spaces of piecewise linear and continuous functions on a mesh of size $h$, we prove that the approximate Hardy constant, $S_h^n$, converges to the optimal Hardy constant $S^n$ no slower than $O(1/\vert \log h \vert)$. We also show that the convergence is no faster than $O(1/\vert \log h \vert^2)$ if $n=1$ or if $n\geq 3$, the domain is the unit ball, and the finite element discretization exploits the rotational symmetry of the problem. Our estimates are compared to exact values for $S_h^n$ obtained computationally.

We propose a new discrete choice model, called the generalized stochastic preference (GSP) model, that incorporates non-rationality into the stochastic preference (SP) choice model, also known as the rank- based choice model. Our model can explain several choice phenomena that cannot be represented by any SP model such as the compromise and attraction effects, but still subsumes the SP model class. The GSP model is defined as a distribution over consumer types, where each type extends the choice behavior of rational types in the SP model. We build on existing methods for estimating the SP model and propose an iterative estimation algorithm for the GSP model that finds new types by solving a integer linear program in each iteration. We further show that our proposed notion of non-rationality can be incorporated into other choice models, like the random utility maximization (RUM) model class as well as any of its subclasses. As a concrete example, we introduce the non-rational extension of the classical MNL model, which we term the generalized MNL (GMNL) model and present an efficient expectation-maximization (EM) algorithm for estimating the GMNL model. Numerical evaluation on real choice data shows that the GMNL and GSP models can outperform their rational counterparts in out-of-sample prediction accuracy.

We provide a framework for the numerical approximation of distributed optimal control problems, based on least-squares finite element methods. Our proposed method simultaneously solves the state and adjoint equations and is $\inf$--$\sup$ stable for any choice of conforming discretization spaces. A reliable and efficient a posteriori error estimator is derived for problems where box constraints are imposed on the control. It can be localized and therefore used to steer an adaptive algorithm. For unconstrained optimal control problems, i.e., the set of controls being a Hilbert space, we obtain a coercive least-squares method and, in particular, quasi-optimality for any choice of discrete approximation space. For constrained problems we derive and analyze a variational inequality where the PDE part is tackled by least-squares finite element methods. We show that the abstract framework can be applied to a wide range of problems, including scalar second-order PDEs, the Stokes problem, and parabolic problems on space-time domains. Numerical examples for some selected problems are presented.

We examine the last-iterate convergence rate of Bregman proximal methods - from mirror descent to mirror-prox and its optimistic variants - as a function of the local geometry induced by the prox-mapping defining the method. For generality, we focus on local solutions of constrained, non-monotone variational inequalities, and we show that the convergence rate of a given method depends sharply on its associated Legendre exponent, a notion that measures the growth rate of the underlying Bregman function (Euclidean, entropic, or other) near a solution. In particular, we show that boundary solutions exhibit a stark separation of regimes between methods with a zero and non-zero Legendre exponent: the former converge at a linear rate, while the latter converge, in general, sublinearly. This dichotomy becomes even more pronounced in linearly constrained problems where methods with entropic regularization achieve a linear convergence rate along sharp directions, compared to convergence in a finite number of steps under Euclidean regularization.

High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry. However, standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from compressive sensing and spectral collocation, our method replaces the use of structured collocation grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching pursuit and $\ell^1$ minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical analysis showing that the approximation error of the proposed method is comparable with the best $s$-term approximation (with respect to the Fourier basis) to the solution. Using the recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the number of collocation points under sufficient conditions on the regularity of the diffusion coefficient. We also present numerical experiments that illustrate the accuracy and stability of the method for the approximation of sparse and compressible solutions.

We develop a numerical method for computing with orthogonal polynomials that are orthogonal on multiple, disjoint intervals for which analytical formulae are currently unknown. Our approach exploits the Fokas--Its--Kitaev Riemann--Hilbert representation of the orthogonal polynomials to produce an $\text{O}(N)$ method to compute the first $N$ recurrence coefficients. The method can also be used for pointwise evaluation of the polynomials and their Cauchy transforms throughout the complex plane. The method encodes the singularity behavior of weight functions using weighted Cauchy integrals of Chebyshev polynomials. This greatly improves the efficiency of the method, outperforming other available techniques. We demonstrate the fast convergence of our method and present applications to integrable systems and approximation theory.

Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions for the marginal likelihood. The RJMCMC approach can be employed to samples model and coefficients jointly, but effective design of the transdimensional jumps of RJMCMC can be challenge, making it hard to implement. Alternatively, the marginal likelihood can be derived using data-augmentation scheme e.g. Polya-gamma data argumentation for logistic regression) or through other estimation methods. However, suitable data-augmentation schemes are not available for every generalised linear and survival models, and using estimations such as Laplace approximation or correlated pseudo-marginal to derive marginal likelihood within a locally informed proposal can be computationally expensive in the "large n, large p" settings. In this paper, three main contributions are presented. Firstly, we present an extended Point-wise implementation of Adaptive Random Neighbourhood Informed proposal (PARNI) to efficiently sample models directly from the marginal posterior distribution in both generalised linear models and survival models. Secondly, in the light of the approximate Laplace approximation, we also describe an efficient and accurate estimation method for the marginal likelihood which involves adaptive parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of the PARNI proposal by replacing the Rao-Blackwellised estimates with the combination of a warm-start estimate and an ergodic average. We present numerous numerical results from simulated data and 8 high-dimensional gene fine mapping data-sets to showcase the efficiency of the novel PARNI proposal compared to the baseline add-delete-swap proposal.

北京阿比特科技有限公司