亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In previous work, Zhang et al. (2021) \cite{zhang2021integrative} developed an integrated smoothed particle hydrodynamics (SPH) method to simulate the principle aspects of cardiac function, including electrophysiology, passive and active mechanical response of the myocardium. As the inclusion of the Purkinje network in electrocardiology is recognized as fundamental to accurately describing the electrical activation in the right and left ventricles, in this paper, we present a multi-order SPH method to handle the electrical propagation through the Purkinje system and in the myocardium with monodomain/monodomain coupling strategy. We first propose an efficient algorithm for network generation on arbitrarily complex surface by exploiting level-set geometry representation and cell-linked list neighbor search algorithm. Then, a reduced-order SPH method is developed to solve the one-dimensional monodomain equation to characterize the fast electrical activation through the Purkinje network. Finally, a multi-order coupling paradigm is introduced to capture the coupled nature of potential propagation arising from the interaction between the network and the myocardium. A set of numerical examples are studied to assess the computational performance, accuracy and versatility of the proposed methods. In particular, numerical study performed in realistic left ventricle demonstrates that the present method features all the physiological issues that characterize a heartbeat simulation, including the initiation of the signal in the Purkinje network and the systolic and diastolic phases. As expected, the results underlie the importance of using physiologically realistic Purkinje network for modeling cardiac functions.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In spite of the dominant performances of deep neural networks, recent works have shown that they are poorly calibrated, resulting in over-confident predictions. Miscalibration can be exacerbated by overfitting due to the minimization of the cross-entropy during training, as it promotes the predicted softmax probabilities to match the one-hot label assignments. This yields a pre-softmax activation of the correct class that is significantly larger than the remaining activations. Recent evidence from the literature suggests that loss functions that embed implicit or explicit maximization of the entropy of predictions yield state-of-the-art calibration performances. We provide a unifying constrained-optimization perspective of current state-of-the-art calibration losses. Specifically, these losses could be viewed as approximations of a linear penalty (or a Lagrangian) imposing equality constraints on logit distances. This points to an important limitation of such underlying equality constraints, whose ensuing gradients constantly push towards a non-informative solution, which might prevent from reaching the best compromise between the discriminative performance and calibration of the model during gradient-based optimization. Following our observations, we propose a simple and flexible generalization based on inequality constraints, which imposes a controllable margin on logit distances. Comprehensive experiments on a variety of image classification, semantic segmentation and NLP benchmarks demonstrate that our method sets novel state-of-the-art results on these tasks in terms of network calibration, without affecting the discriminative performance. The code is available at //github.com/by-liu/MbLS .

Koopman operators are infinite-dimensional operators that globally linearize nonlinear dynamical systems, making their spectral information useful for understanding dynamics. However, Koopman operators can have continuous spectra and infinite-dimensional invariant subspaces, making computing their spectral information a considerable challenge. This paper describes data-driven algorithms with rigorous convergence guarantees for computing spectral information of Koopman operators from trajectory data. We introduce residual dynamic mode decomposition (ResDMD), which provides the first scheme for computing the spectra and pseudospectra of general Koopman operators from snapshot data without spectral pollution. Using the resolvent operator and ResDMD, we also compute smoothed approximations of spectral measures associated with measure-preserving dynamical systems. We prove explicit convergence theorems for our algorithms, which can achieve high-order convergence even for chaotic systems, when computing the density of the continuous spectrum and the discrete spectrum. We demonstrate our algorithms on the tent map, Gauss iterated map, nonlinear pendulum, double pendulum, Lorenz system, and an $11$-dimensional extended Lorenz system. Finally, we provide kernelized variants of our algorithms for dynamical systems with a high-dimensional state-space. This allows us to compute the spectral measure associated with the dynamics of a protein molecule that has a 20,046-dimensional state-space, and compute nonlinear Koopman modes with error bounds for turbulent flow past aerofoils with Reynolds number $>10^5$ that has a 295,122-dimensional state-space.

A critical aspect in the manufacturing process is the visual quality inspection of manufactured components for defects and flaws. Human-only visual inspection can be very time-consuming and laborious, and is a significant bottleneck especially for high-throughput manufacturing scenarios. Given significant advances in the field of deep learning, automated visual quality inspection can lead to highly efficient and reliable detection of defects and flaws during the manufacturing process. However, deep learning-driven visual inspection methods often necessitate significant computational resources, thus limiting throughput and act as a bottleneck to widespread adoption for enabling smart factories. In this study, we investigated the utilization of a machine-driven design exploration approach to create TinyDefectNet, a highly compact deep convolutional network architecture tailored for high-throughput manufacturing visual quality inspection. TinyDefectNet comprises of just ~427K parameters and has a computational complexity of ~97M FLOPs, yet achieving a detection accuracy of a state-of-the-art architecture for the task of surface defect detection on the NEU defect benchmark dataset. As such, TinyDefectNet can achieve the same level of detection performance at 52$\times$ lower architectural complexity and 11x lower computational complexity. Furthermore, TinyDefectNet was deployed on an AMD EPYC 7R32, and achieved 7.6x faster throughput using the native Tensorflow environment and 9x faster throughput using AMD ZenDNN accelerator library. Finally, explainability-driven performance validation strategy was conducted to ensure correct decision-making behaviour was exhibited by TinyDefectNet to improve trust in its usage by operators and inspectors.

A spectral formulation of the boundary integral equation method for antiplane problems is presented. The boundary integral equation method relates the slip and the shear stress at an interface between two half-planes. It involves evaluating a space-time convolution of the shear stress or the slip at the interface. In the spectral formulation, the convolution with respect to the spatial coordinate is performed in the spectral domain. This leads to greater numerical efficiency. Prior work on the spectral formulation of the boundary integral equation method has performed the elastodynamic convolution of the slip at the interface. In the present work, the convolution is performed of the shear stress at the interface. The spectral formulation is developed both for an interface between identical solids and for a bi-material interface. It is validated by numerically calculating the response of the interface to harmonic and to impulsive disturbances and comparing with known analytical solutions. To illustrate use of the method, dynamic slip rupture propagation with a slip-weakening friction law is simulated.

Current models on Explainable Artificial Intelligence (XAI) have shown an evident and quantified lack of reliability for measuring feature-relevance when statistically entangled features are proposed for training deep classifiers. There has been an increase in the application of Deep Learning in clinical trials to predict early diagnosis of neuro-developmental disorders, such as Autism Spectrum Disorder (ASD). However, the inclusion of more reliable saliency-maps to obtain more trustworthy and interpretable metrics using neural activity features is still insufficiently mature for practical applications in diagnostics or clinical trials. Moreover, in ASD research the inclusion of deep classifiers that use neural measures to predict viewed facial emotions is relatively unexplored. Therefore, in this study we propose the evaluation of a Convolutional Neural Network (CNN) for electroencephalography (EEG)-based facial emotion recognition decoding complemented with a novel RemOve-And-Retrain (ROAR) methodology to recover highly relevant features used in the classifier. Specifically, we compare well-known relevance maps such as Layer-Wise Relevance Propagation (LRP), PatternNet, Pattern Attribution, and Smooth-Grad Squared. This study is the first to consolidate a more transparent feature-relevance calculation for a successful EEG-based facial emotion recognition using a within-subject-trained CNN in typically-developed and ASD individuals.

We aim to reconstruct the latent space dynamics of high dimensional systems using model order reduction via the spectral proper orthogonal decomposition (SPOD). The proposed method is based on three fundamental steps: in the first, we compress the data from a high-dimensional representation to a lower dimensional one by constructing the SPOD latent space; in the second, we build the time-dependent coefficients by projecting the realizations (also referred to as snapshots) onto the reduced SPOD basis and we learn their evolution in time with the aid of recurrent neural networks; in the third, we reconstruct the high-dimensional data from the learnt lower-dimensional representation. The proposed method is demonstrated on two different test cases, namely, a compressible jet flow, and a geophysical problem known as the Madden-Julian Oscillation. An extensive comparison between SPOD and the equivalent POD-based counterpart is provided and differences between the two approaches are highlighted. The numerical results suggest that the proposed model is able to provide low rank predictions of complex statistically stationary data and to provide insights into the evolution of phenomena characterized by specific range of frequencies. The comparison between POD and SPOD surrogate strategies highlights the need for further work on the characterization of the error interplay between data reduction techniques and neural network forecasts.

The generation of tailored light with multi-core fiber (MCF) lensless microendoscopes is widely used in biomedicine. However, the computer-generated holograms (CGHs) used for such applications are typically generated by iterative algorithms, which demand high computation effort, limiting advanced applications like in vivo optogenetic stimulation and fiber-optic cell manipulation. The random and discrete distribution of the fiber cores induces strong spatial aliasing to the CGHs, hence, an approach that can rapidly generate tailored CGHs for MCFs is highly demanded. We demonstrate a novel phase encoder deep neural network (CoreNet), which can generate accurate tailored CGHs for MCFs at a near video-rate. Simulations show that CoreNet can speed up the computation time by two magnitudes and increase the fidelity of the generated light field compared to the conventional CGH techniques. For the first time, real-time generated tailored CGHs are on-the-fly loaded to the phase-only SLM for dynamic light fields generation through the MCF microendoscope in experiments. This paves the avenue for real-time cell rotation and several further applications that require real-time high-fidelity light delivery in biomedicine.

Network embedding aims to learn low-dimensional representations of nodes in a network, while the network structure and inherent properties are preserved. It has attracted tremendous attention recently due to significant progress in downstream network learning tasks, such as node classification, link prediction, and visualization. However, most existing network embedding methods suffer from the expensive computations due to the large volume of networks. In this paper, we propose a $10\times \sim 100\times$ faster network embedding method, called Progle, by elegantly utilizing the sparsity property of online networks and spectral analysis. In Progle, we first construct a \textit{sparse} proximity matrix and train the network embedding efficiently via sparse matrix decomposition. Then we introduce a network propagation pattern via spectral analysis to incorporate local and global structure information into the embedding. Besides, this model can be generalized to integrate network information into other insufficiently trained embeddings at speed. Benefiting from sparse spectral network embedding, our experiment on four different datasets shows that Progle outperforms or is comparable to state-of-the-art unsupervised comparison approaches---DeepWalk, LINE, node2vec, GraRep, and HOPE, regarding accuracy, while is $10\times$ faster than the fastest word2vec-based method. Finally, we validate the scalability of Progle both in real large-scale networks and multiple scales of synthetic networks.

This research mainly emphasizes on traffic detection thus essentially involving object detection and classification. The particular work discussed here is motivated from unsatisfactory attempts of re-using well known pre-trained object detection networks for domain specific data. In this course, some trivial issues leading to prominent performance drop are identified and ways to resolve them are discussed. For example, some simple yet relevant tricks regarding data collection and sampling prove to be very beneficial. Also, introducing a blur net to deal with blurred real time data is another important factor promoting performance elevation. We further study the neural network design issues for beneficial object classification and involve shared, region-independent convolutional features. Adaptive learning rates to deal with saddle points are also investigated and an average covariance matrix based pre-conditioned approach is proposed. We also introduce the use of optical flow features to accommodate orientation information. Experimental results demonstrate that this results in a steady rise in the performance rate.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司