Hypergraphs are a powerful abstraction for modeling high-order relations, which are ubiquitous in many fields. A hypergraph consists of nodes and hyperedges (i.e., subsets of nodes); and there have been a number of attempts to extend the notion of $k$-cores, which proved useful with numerous applications for pairwise graphs, to hypergraphs. However, the previous extensions are based on an unrealistic assumption that hyperedges are fragile, i.e., a high-order relation becomes obsolete as soon as a single member leaves it. In this work, we propose a new substructure model, called ($k$, $t$)-hypercore, based on the assumption that high-order relations remain as long as at least $t$ fraction of the members remain. Specifically, it is defined as the maximal subhypergraph where (1) every node has degree at least $k$ in it and (2) at least $t$ fraction of the nodes remain in every hyperedge. We first prove that, given $t$ (or $k$), finding the ($k$, $t$)-hypercore for every possible $k$ (or $t$) can be computed in time linear w.r.t the sum of the sizes of hyperedges. Then, we demonstrate that real-world hypergraphs from the same domain share similar ($k$, $t$)-hypercore structures, which capture different perspectives depending on $t$. Lastly, we show the successful applications of our model in identifying influential nodes, dense substructures, and vulnerability in hypergraphs.
The rise of mobile apps has brought greater convenience and customization for users. However, many apps use analytics services to collect a wide range of user interaction data purportedly to improve their service, while presenting app users with vague or incomplete information about this collection in their privacy policies. Typically, such policies neglect to describe all types of user interaction data or how the data is collected. User interaction data is not directly regulated by privacy legislation such as the GDPR. However, the extent and hidden nature of its collection means both that apps are walking a legal tightrope and that users' trust is at risk. To facilitate transparency and comparison, and based on common phrases used in published privacy policies and Android documentation, we make a standardized collection claim template. Based on static analysis of actual data collection implementations, we compare the privacy policy claims of the top 10 apps to fact-checked collection claims. Our findings reveal that all the claims made by these apps are incomplete. By providing a standardized way of describing user interaction data collection in mobile apps and comparing actual collection practices to privacy policies, this work aims to increase transparency and establish trust between app developers and users.
We study the relationship between the underlying structure of posets and the spectral and combinatorial properties of their higher-order random walks. While fast mixing of random walks on hypergraphs has led to myriad breakthroughs throughout theoretical computer science in the last five years, many other important applications (e.g. locally testable codes, 2-2 games) rely on the more general non-simplicial structures. These works make it clear that the global expansion properties of posets depend strongly on their underlying architecture (e.g. simplicial, cubical, linear algebraic), but the overall phenomenon remains poorly understood. In this work, we quantify the advantage of different architectures, highlighting how structural regularity controls the spectral decay and edge-expansion of corresponding random walks. In particular, we show the spectra of walks on expanding posets (Dikstein, Dinur, Filmus, Harsha RANDOM 2018) concentrate in strips around a small number of approximate eigenvalues controlled by the poset's regularity. This gives a simple condition to identify architectures (e.g. the Grassmann) that exhibit fast (exponential) decay of eigenvalues, versus architectures like hypergraphs with slow (linear) decay -- a crucial distinction in applications to hardness of approximation and agreement testing such as the recent proof of the 2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). We show these results lead to a tight variance-based characterization of edge-expansion on eposets generalizing (Bafna, Hopkins, Kaufman, and Lovett (SODA 2022)), and pay special attention to the case of the Grassmann where we show our results are tight for a natural set of sparsifications of the Grassmann graphs. We note for clarity that our results do not recover the characterization used in the proof of the 2-2 Games Conjecture which relies on $\ell_\infty$ rather than $\ell_2$-structure.
Estimating a Gibbs density function given a sample is an important problem in computational statistics and statistical learning. Although the well established maximum likelihood method is commonly used, it requires the computation of the partition function (i.e., the normalization of the density). This function can be easily calculated for simple low-dimensional problems but its computation is difficult or even intractable for general densities and high-dimensional problems. In this paper we propose an alternative approach based on Maximum A-Posteriori (MAP) estimators, we name Maximum Recovery MAP (MR-MAP), to derive estimators that do not require the computation of the partition function, and reformulate the problem as an optimization problem. We further propose a least-action type potential that allows us to quickly solve the optimization problem as a feed-forward hyperbolic neural network. We demonstrate the effectiveness of our methods on some standard data sets.
This research study focuses primarily on Block-Chain-based voting systems, which facilitate participation in and administration of voting for voters, candidates, and officials. Because we used Block-Chain in the backend, which enables everyone to trace vote fraud, our system is incredibly safe. This paper approach any unique identification the Aadhar Card number or an OTP will be generated then user can utilise the voting system to cast his/her vote. A proposal for Bit-coin, a virtual currency system that is decided by a central authority for producing money, transferring ownership, and validating transactions, included the peer-to-peer network in a Block-Chain system, the ledger is duplicated across several, identical databases which is hosted and updated by a different process and all other nodes are updated concurrently if changes made to one node and a transaction occurs, the records of the values and assets are permanently exchanged, Only the user and the system need to be verified no other authentication required. If any transaction carried out on a block chain-based system would be settled in a matter of seconds while still being safe, verifiable, and transparent. Although block-chain technology is the foundation for Bitcoin and other digital currencies but also it may be applied widely to greatly reduce difficulties in many other sectors, Voting is the sector that is battling from a lack of security, centralized-authority, management-issues, and many more despite the fact that transactions are kept in a distributed and safe fashion.
Graph neural networks (GNNs) are de facto standard deep learning architectures for machine learning on graphs. This has led to a large body of work analyzing the capabilities and limitations of these models, particularly pertaining to their representation and extrapolation capacity. We offer a novel theoretical perspective on the representation and extrapolation capacity of GNNs, by answering the question: how do GNNs behave as the number of graph nodes become very large? Under mild assumptions, we show that when we draw graphs of increasing size from the Erd\H{o}s-R\'enyi model, the probability that such graphs are mapped to a particular output by a class of GNN classifiers tends to either zero or to one. This class includes the popular graph convolutional network architecture. The result establishes 'zero-one laws' for these GNNs, and analogously to other convergence laws, entails theoretical limitations on their capacity. We empirically verify our results, observing that the theoretical asymptotic limits are evident already on relatively small graphs.
Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.
In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.