亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The vast network of oil and gas transmission pipelines requires periodic monitoring for maintenance and hazard inspection to avoid equipment failure and potential accidents. The severe COVID-19 pandemic situation forced the companies to shrink the size of their teams. One risk which is faced on-site is represented by the uncontrolled release of flammable oil and gas. Among many inspection methods, the unmanned aerial vehicle system contains flexibility and stability. Unmanned aerial vehicles can transfer data in real-time, while they are doing their monitoring tasks. The current article focuses on unmanned aerial vehicles equipped with optical sensing and artificial intelligence, especially image recognition with deep learning techniques for pipeline surveillance. Unmanned aerial vehicles can be used for regular patrolling duties to identify and capture images and videos of the area of interest. Places that are hard to reach will be accessed faster, cheaper and with less risk. The current paper is based on the idea of capturing video and images of drone-based inspections, which can discover several potential hazardous problems before they become dangerous. Damage can emerge as a weakening of the cladding on the external pipe insulation. There can also be the case when the thickness of piping through external corrosion can occur. The paper describes a survey completed by experts from the oil and gas industry done for finding the functional and non-functional requirements of the proposed system.

相關內容

不需要駕駛(shi)員(yuan)登機駕駛(shi)的各式遙控飛行器。 

Unmanned aerial vehicle (UAV) swarm enabled edge computing is envisioned to be promising in the sixth generation wireless communication networks due to their wide application sensories and flexible deployment. However, most of the existing works focus on edge computing enabled by a single or a small scale UAVs, which are very different from UAV swarm-enabled edge computing. In order to facilitate the practical applications of UAV swarm-enabled edge computing, the state of the art research is presented in this article. The potential applications, architectures and implementation considerations are illustrated. Moreover, the promising enabling technologies for UAV swarm-enabled edge computing are discussed. Furthermore, we outline challenges and open issues in order to shed light on the future research directions.

Artificial intelligence (AI), especially deep learning, requires vast amounts of data for training, testing, and validation. Collecting these data and the corresponding annotations requires the implementation of imaging biobanks that provide access to these data in a standardized way. This requires careful design and implementation based on the current standards and guidelines and complying with the current legal restrictions. However, the realization of proper imaging data collections is not sufficient to train, validate and deploy AI as resource demands are high and require a careful hybrid implementation of AI pipelines both on-premise and in the cloud. This chapter aims to help the reader when technical considerations have to be made about the AI environment by providing a technical background of different concepts and implementation aspects involved in data storage, cloud usage, and AI pipelines.

Emerging applications -- cloud computing, the internet of things, and augmented/virtual reality -- demand responsive, secure, and scalable datacenter networks. These networks currently implement simple, per-packet, data-plane heuristics (e.g., ECMP and sketches) under a slow, millisecond-latency control plane that runs data-driven performance and security policies. However, to meet applications' service-level objectives (SLOs) in a modern data center, networks must bridge the gap between line-rate, per-packet execution and complex decision making. In this work, we present the design and implementation of Taurus, a data plane for line-rate inference. Taurus adds custom hardware based on a flexible, parallel-patterns (MapReduce) abstraction to programmable network devices, such as switches and NICs; this new hardware uses pipelined SIMD parallelism to enable per-packet MapReduce operations (e.g., inference). Our evaluation of a Taurus switch ASIC -- supporting several real-world models -- shows that Taurus operates orders of magnitude faster than a server-based control plane while increasing area by 3.8% and latency for line-rate ML models by up to 221 ns. Furthermore, our Taurus FPGA prototype achieves full model accuracy and detects two orders of magnitude more events than a state-of-the-art control-plane anomaly-detection system.

Object detection is a computer vision task that has become an integral part of many consumer applications today such as surveillance and security systems, mobile text recognition, and diagnosing diseases from MRI/CT scans. Object detection is also one of the critical components to support autonomous driving. Autonomous vehicles rely on the perception of their surroundings to ensure safe and robust driving performance. This perception system uses object detection algorithms to accurately determine objects such as pedestrians, vehicles, traffic signs, and barriers in the vehicle's vicinity. Deep learning-based object detectors play a vital role in finding and localizing these objects in real-time. This article discusses the state-of-the-art in object detectors and open challenges for their integration into autonomous vehicles.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

The novel coronavirus disease (COVID-19) has crushed daily routines and is still rampaging through the world. Existing solution for nonpharmaceutical interventions usually needs to timely and precisely select a subset of residential urban areas for containment or even quarantine, where the spatial distribution of confirmed cases has been considered as a key criterion for the subset selection. While such containment measure has successfully stopped or slowed down the spread of COVID-19 in some countries, it is criticized for being inefficient or ineffective, as the statistics of confirmed cases are usually time-delayed and coarse-grained. To tackle the issues, we propose C-Watcher, a novel data-driven framework that aims at screening every neighborhood in a target city and predicting infection risks, prior to the spread of COVID-19 from epicenters to the city. In terms of design, C-Watcher collects large-scale long-term human mobility data from Baidu Maps, then characterizes every residential neighborhood in the city using a set of features based on urban mobility patterns. Furthermore, to transfer the firsthand knowledge (witted in epicenters) to the target city before local outbreaks, we adopt a novel adversarial encoder framework to learn "city-invariant" representations from the mobility-related features for precise early detection of high-risk neighborhoods, even before any confirmed cases known, in the target city. We carried out extensive experiments on C-Watcher using the real-data records in the early stage of COVID-19 outbreaks, where the results demonstrate the efficiency and effectiveness of C-Watcher for early detection of high-risk neighborhoods from a large number of cities.

Unmanned Aerial Vehicles are increasingly being used in surveillance and traffic monitoring thanks to their high mobility and ability to cover areas at different altitudes and locations. One of the major challenges is to use aerial images to accurately detect cars and count them in real-time for traffic monitoring purposes. Several deep learning techniques were recently proposed based on convolution neural network (CNN) for real-time classification and recognition in computer vision. However, their performance depends on the scenarios where they are used. In this paper, we investigate the performance of two state-of-the-art CNN algorithms, namely Faster R-CNN and YOLOv3, in the context of car detection from aerial images. We trained and tested these two models on a large car dataset taken from UAVs. We demonstrated in this paper that YOLOv3 outperforms Faster R-CNN in sensitivity and processing time, although they are comparable in the precision metric.

While generic object detection has achieved large improvements with rich feature hierarchies from deep nets, detecting small objects with poor visual cues remains challenging. Motion cues from multiple frames may be more informative for detecting such hard-to-distinguish objects in each frame. However, how to encode discriminative motion patterns, such as deformations and pose changes that characterize objects, has remained an open question. To learn them and thereby realize small object detection, we present a neural model called the Recurrent Correlational Network, where detection and tracking are jointly performed over a multi-frame representation learned through a single, trainable, and end-to-end network. A convolutional long short-term memory network is utilized for learning informative appearance change for detection, while learned representation is shared in tracking for enhancing its performance. In experiments with datasets containing images of scenes with small flying objects, such as birds and unmanned aerial vehicles, the proposed method yielded consistent improvements in detection performance over deep single-frame detectors and existing motion-based detectors. Furthermore, our network performs as well as state-of-the-art generic object trackers when it was evaluated as a tracker on the bird dataset.

Research on damage detection of road surfaces using image processing techniques has been actively conducted, achieving considerably high detection accuracies. Many studies only focus on the detection of the presence or absence of damage. However, in a real-world scenario, when the road managers from a governing body need to repair such damage, they need to clearly understand the type of damage in order to take effective action. In addition, in many of these previous studies, the researchers acquire their own data using different methods. Hence, there is no uniform road damage dataset available openly, leading to the absence of a benchmark for road damage detection. This study makes three contributions to address these issues. First, to the best of our knowledge, for the first time, a large-scale road damage dataset is prepared. This dataset is composed of 9,053 road damage images captured with a smartphone installed on a car, with 15,435 instances of road surface damage included in these road images. In order to generate this dataset, we cooperated with 7 municipalities in Japan and acquired road images for more than 40 hours. These images were captured in a wide variety of weather and illuminance conditions. In each image, we annotated the bounding box representing the location and type of damage. Next, we used a state-of-the-art object detection method using convolutional neural networks to train the damage detection model with our dataset, and compared the accuracy and runtime speed on both, using a GPU server and a smartphone. Finally, we demonstrate that the type of damage can be classified into eight types with high accuracy by applying the proposed object detection method. The road damage dataset, our experimental results, and the developed smartphone application used in this study are publicly available (//github.com/sekilab/RoadDamageDetector/).

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

北京阿比特科技有限公司