亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider delay differential equations with a polynomially distributed delay. We derive an equivalent system of delay differential equations, which includes just two discrete delays. The stability of the equivalent system and its stationary solutions are investigated. Alternatively, a Gaussian quadrature generates a discretisation of the integral, which describes the distributed delay in the original delay differential equation. This technique yields an approximate differential equation with multiple discrete delays. We present results of numerical computations, where initial value problems of the differential equations are solved. Therein, the two approaches are compared.

相關內容

Sampling a random permutation with restricted positions, or equivalently approximating the permanent of a 0-1 matrix, is a fundamental problem in computer science, with several notable results attained through the years. In this paper, we first improves the running time of the algorithms for a single permutation. We propose a fast approximation algorithm for the permanent of $\gamma$-dense 0-1 matrix, with an expected running time of $\tilde{O}\left(n^{2+(1-\gamma)/(2\gamma - 1)}\right)$. Our result removes the $n^4$ term from the previous best runtime and provides an improvement for $\gamma \geq 0.6$. When $\gamma = o(1)$, our runtime is $\tilde{\Theta}(n^2)$, which is nearly optimal for this problem. The core of our proof is to demonstrate that the Sinkhorn algorithm, a fundamental tool in matrix scaling, can achieve maximum accuracy of $1/\text{poly}(n)$ for dense matrices in $O(\log n)$ iterations. We further introduce a general model called permutations with disjunctive constraints (PDC) for handling multiple constrained permutations. We propose a novel Markov chain-based algorithm for sampling nearly uniform solutions of PDC within a Lov${\'a}$sz Local Lemma (LLL)-like regime by a novel sampling framework called correlated factorization. For uniform PDC formulas, where all constraints are of the same length and all permutations are of equal size, our algorithm runs in nearly linear time with respect to the number of variables.

We construct a polynomial-time classical algorithm that samples from the output distribution of low-depth noisy Clifford circuits with any product-state inputs and final single-qubit measurements in any basis. This class of circuits includes Clifford-magic circuits and Conjugated-Clifford circuits, which are important candidates for demonstrating quantum advantage using non-universal gates. Additionally, our results generalize a simulation algorithm for IQP circuits [Rajakumar et. al, SODA'25] to the case of IQP circuits augmented with CNOT gates, which is another class of non-universal circuits that are relevant to current experiments. Importantly, our results do not require randomness assumptions over the circuit families considered (such as anticoncentration properties) and instead hold for \textit{every} circuit in each class. This allows us to place tight limitations on the robustness of these circuits to noise. In particular, we show that there is no quantum advantage at large depths with realistically noisy Clifford circuits, even with perfect magic state inputs, or IQP circuits with CNOT gates, even with arbitrary diagonal non-Clifford gates. The key insight behind the algorithm is that interspersed noise causes a decay of long-range entanglement, and at depths beyond a critical threshold, the noise builds up to an extent that most correlations can be classically simulated. To prove our results, we merge techniques from percolation theory with tools from Pauli path analysis.

We examine the numerical approximation of time-dependent Hamilton-Jacobi equations on networks, providing a convergence error estimate for the semi-Lagrangian scheme introduced in (Carlini and Siconolfi, 2023), where convergence was proven without an error estimate. We derive a convergence error estimate of order one-half. This is achieved showing the equivalence between two definitions of solutions to this problem proposed in (Imbert and Monneau, 2017) and (Siconolfi, 2022), a result of independent interest, and applying a general convergence result from (Carlini, Festa and Forcadel, 2020).

We investigate the use of sequence analysis for behavior modeling, emphasizing that sequential context often outweighs the value of aggregate features in understanding human behavior. We discuss framing common problems in fields like healthcare, finance, and e-commerce as sequence modeling tasks, and address challenges related to constructing coherent sequences from fragmented data and disentangling complex behavior patterns. We present a framework for sequence modeling using Ensembles of Hidden Markov Models, which are lightweight, interpretable, and efficient. Our ensemble-based scoring method enables robust comparison across sequences of different lengths and enhances performance in scenarios with imbalanced or scarce data. The framework scales in real-world scenarios, is compatible with downstream feature-based modeling, and is applicable in both supervised and unsupervised learning settings. We demonstrate the effectiveness of our method with results on a longitudinal human behavior dataset.

Higher order artificial neurons whose outputs are computed by applying an activation function to a higher order multinomial function of the inputs have been considered in the past, but did not gain acceptance due to the extra parameters and computational cost. However, higher order neurons have significantly greater learning capabilities since the decision boundaries of higher order neurons can be complex surfaces instead of just hyperplanes. The boundary of a single quadratic neuron can be a general hyper-quadric surface allowing it to learn many nonlinearly separable datasets. Since quadratic forms can be represented by symmetric matrices, only $\frac{n(n+1)}{2}$ additional parameters are needed instead of $n^2$. A quadratic Logistic regression model is first presented. Solutions to the XOR problem with a single quadratic neuron are considered. The complete vectorized equations for both forward and backward propagation in feedforward networks composed of quadratic neurons are derived. A reduced parameter quadratic neural network model with just $ n $ additional parameters per neuron that provides a compromise between learning ability and computational cost is presented. Comparison on benchmark classification datasets are used to demonstrate that a final layer of quadratic neurons enables networks to achieve higher accuracy with significantly fewer hidden layer neurons. In particular this paper shows that any dataset composed of $\mathcal{C}$ bounded clusters can be separated with only a single layer of $\mathcal{C}$ quadratic neurons.

Investigating the marginal causal effect of an intervention on an outcome from complex data remains challenging due to the inflexibility of employed models and the lack of complexity in causal benchmark datasets, which often fail to reproduce intricate real-world data patterns. In this paper we introduce Frugal Flows, a novel likelihood-based machine learning model that uses normalising flows to flexibly learn the data-generating process, while also directly inferring the marginal causal quantities from observational data. We propose that these models are exceptionally well suited for generating synthetic data to validate causal methods. They can create synthetic datasets that closely resemble the empirical dataset, while automatically and exactly satisfying a user-defined average treatment effect. To our knowledge, Frugal Flows are the first generative model to both learn flexible data representations and also exactly parameterise quantities such as the average treatment effect and the degree of unobserved confounding. We demonstrate the above with experiments on both simulated and real-world datasets.

We describe a mesh-free three-dimensional (3D) numerical scheme for solving the incompressible semi-geostrophic equations, based on semi-discrete optimal transport techniques. These results generalise previous two-dimensional (2D) implementations. The optimal transport methods we adopt are known for their structural preservation and energy conservation qualities and achieve an excellent level of efficiency and numerical energy-conservation. We use this scheme to generate numerical simulations of an important benchmark problem. To our knowledge, this is the first fully 3D simulation of this particular cyclone, evidencing the model's applicability to atmospheric and oceanic phenomena and offering a novel, robust tool for meteorological and oceanographic modelling.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司