亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a method for estimating disparity confidence intervals in stereo matching problems. Confidence intervals provide complementary information to usual confidence measures. To the best of our knowledge, this is the first method creating disparity confidence intervals based on the cost volume. This method relies on possibility distributions to interpret the epistemic uncertainty of the cost volume. Our method has the benefit of having a white-box nature, differing in this respect from current state-of-the-art deep neural networks approaches. The accuracy and size of confidence intervals are validated using the Middlebury stereo datasets as well as a dataset of satellite images. This contribution is freely available on GitHub.

相關內容

Citation practices are crucial in shaping the structure of scientific knowledge, yet they are often influenced by contemporary norms and biases. The emergence of Large Language Models (LLMs) like GPT-4 introduces a new dynamic to these practices. Interestingly, the characteristics and potential biases of references recommended by LLMs that entirely rely on their parametric knowledge, and not on search or retrieval-augmented generation, remain unexplored. Here, we analyze these characteristics in an experiment using a dataset of 166 papers from AAAI, NeurIPS, ICML, and ICLR, published after GPT-4's knowledge cut-off date, encompassing 3,066 references in total. In our experiment, GPT-4 was tasked with suggesting scholarly references for the anonymized in-text citations within these papers. Our findings reveal a remarkable similarity between human and LLM citation patterns, but with a more pronounced high citation bias in GPT-4, which persists even after controlling for publication year, title length, number of authors, and venue. Additionally, we observe a large consistency between the characteristics of GPT-4's existing and non-existent generated references, indicating the model's internalization of citation patterns. By analyzing citation graphs, we show that the references recommended by GPT-4 are embedded in the relevant citation context, suggesting an even deeper conceptual internalization of the citation networks. While LLMs can aid in citation generation, they may also amplify existing biases and introduce new ones, potentially skewing scientific knowledge dissemination. Our results underscore the need for identifying the model's biases and for developing balanced methods to interact with LLMs in general.

Instrumental variables (IVs) provide a powerful strategy for identifying causal effects in the presence of unobservable confounders. Within the nonparametric setting (NPIV), recent methods have been based on nonlinear generalizations of Two-Stage Least Squares and on minimax formulations derived from moment conditions or duality. In a novel direction, we show how to formulate a functional stochastic gradient descent algorithm to tackle NPIV regression by directly minimizing the populational risk. We provide theoretical support in the form of bounds on the excess risk, and conduct numerical experiments showcasing our method's superior stability and competitive performance relative to current state-of-the-art alternatives. This algorithm enables flexible estimator choices, such as neural networks or kernel based methods, as well as non-quadratic loss functions, which may be suitable for structural equations beyond the setting of continuous outcomes and additive noise. Finally, we demonstrate this flexibility of our framework by presenting how it naturally addresses the important case of binary outcomes, which has received far less attention by recent developments in the NPIV literature.

We consider limit probabilities of first order properties in random graphs with a given degree sequence. Under mild conditions on the degree sequence, we show that the closure set of limit probabilities is a finite union of closed intervals. Moreover, we characterize the degree sequences for which this closure set is the interval $[0,1]$, a property that is intimately related with the probability that the random graph is acyclic. As a side result, we compile a full description of the cycle distribution of random graphs and study their fragment (disjoint union of unicyclic components) in the subcritical regime. Finally, we amend the proof of the existence of limit probabilities for first order properties in random graphs with a given degree sequence; this result was already claimed by Lynch~[IEEE LICS 2003] but his proof contained some inaccuracies.

In a context of a continuous digitalisation of processes, organisations must deal with the challenge of detecting anomalies that can reveal suspicious activities upon an increasing volume of data. To pursue this goal, audit engagements are carried out regularly, and internal auditors and purchase specialists are constantly looking for new methods to automate these processes. This work proposes a methodology to prioritise the investigation of the cases detected in two large purchase datasets from real data. The goal is to contribute to the effectiveness of the companies' control efforts and to increase the performance of carrying out such tasks. A comprehensive Exploratory Data Analysis is carried out before using unsupervised Machine Learning techniques addressed to detect anomalies. A univariate approach has been applied through the z-Score index and the DBSCAN algorithm, while a multivariate analysis is implemented with the k-Means and Isolation Forest algorithms, and the Silhouette index, resulting in each method having a transaction candidates' proposal to be reviewed. An ensemble prioritisation of the candidates is provided jointly with a proposal of explicability methods (LIME, Shapley, SHAP) to help the company specialists in their understanding.

Causal models are crucial for understanding complex systems and identifying causal relationships among variables. Even though causal models are extremely popular, conditional probability calculation of formulas involving interventions pose significant challenges. In case of Causal Bayesian Networks (CBNs), Pearl assumes autonomy of mechanisms that determine interventions to calculate a range of probabilities. We show that by making simple yet often realistic independence assumptions, it is possible to uniquely estimate the probability of an interventional formula (including the well-studied notions of probability of sufficiency and necessity). We discuss when these assumptions are appropriate. Importantly, in many cases of interest, when the assumptions are appropriate, these probability estimates can be evaluated using observational data, which carries immense significance in scenarios where conducting experiments is impractical or unfeasible.

Neural network-based approaches have recently shown significant promise in solving partial differential equations (PDEs) in science and engineering, especially in scenarios featuring complex domains or the incorporation of empirical data. One advantage of the neural network method for PDEs lies in its automatic differentiation (AD), which necessitates only the sample points themselves, unlike traditional finite difference (FD) approximations that require nearby local points to compute derivatives. In this paper, we quantitatively demonstrate the advantage of AD in training neural networks. The concept of truncated entropy is introduced to characterize the training property. Specifically, through comprehensive experimental and theoretical analyses conducted on random feature models and two-layer neural networks, we discover that the defined truncated entropy serves as a reliable metric for quantifying the residual loss of random feature models and the training speed of neural networks for both AD and FD methods. Our experimental and theoretical analyses demonstrate that, from a training perspective, AD outperforms FD in solving partial differential equations.

This paper studies a variant of the rate-distortion problem motivated by task-oriented semantic communication and distributed learning problems, where $M$ correlated sources are independently encoded for a central decoder. The decoder has access to a correlated side information in addition to the messages received from the encoders, and aims to recover a latent random variable correlated with the sources observed by the encoders within a given distortion constraint rather than recovering the sources themselves. We provide bounds on the rate-distortion region for this scenario in general, and characterize the rate-distortion function exactly when the sources are conditionally independent given the side information.

In multivariate spline regression, the number and locations of knots influence the performance and interpretability significantly. However, due to non-differentiability and varying dimensions, there is no desirable frequentist method to make inference on knots. In this article, we propose a fully Bayesian approach for knot inference in multivariate spline regression. The existing Bayesian method often uses BIC to calculate the posterior, but BIC is too liberal and it will heavily overestimate the knot number when the candidate model space is large. We specify a new prior on the knot number to take into account the complexity of the model space and derive an analytic formula in the normal model. In the non-normal cases, we utilize the extended Bayesian information criterion to approximate the posterior density. The samples are simulated in the space with differing dimensions via reversible jump Markov chain Monte Carlo. We apply the proposed method in knot inference and manifold denoising. Experiments demonstrate the splendid capability of the algorithm, especially in function fitting with jumping discontinuity.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

北京阿比特科技有限公司